SCHENKS BRANCH TRIBUTARY STREAM **RESTORATION PROJECT**

SCHENKS BRANCH TRIBUTARY PROJECT INFORMATION

PROJECT TYPE: WATERSHED IMPROVEMENT VIA STREAM RESTORATION PROJECT ADDRESS: 950 MELBOURNE RD, CHARLOTTESVILLE, VA 22902 SITE ZONING: R-1 PARCEL IDS: 450001000, 460001200, 460002000

NEIGHBORHOOD: GREENBRIER

CONSTRUCTION ENTRANCE (WGS84): 38.0502966, -78.471797 PROJECT AREA: 2.55 AC DISTURBED AREA: 2.55 AC

VMRC FILE #: 22-0847

REQUIRED PERMITS FOR CONSTRUCTION CITY OF CHARLOTTESVILLE LAND DISTURBANCE PERMIT USACE NWP27 ACTION ID: NAO-2021-02291 VADEQ GENERAL CONSTRUCTION PERMIT

PROJECT CONTACT INFORMATION

OWNER, PROJECT MANAGER DAN FRISBEE CITY OF CHARLOTTESVILLE DEPARTMENT OF PUBLIC WORKS 305 4TH STREET NW CHARLOTTESVILLE, VA 22903 FRISBEE@CHARLOTTESVILLE.GOV 434-970-3997

OWNER. EMERGENCY CONTACT ROY NESTER, P.E. CITY OF CHARLOTTESVILLE DEPARTMENT OF UTILTIES 305 4TH STREET NW CHARLOTTESVILLE, VA 22903 NESTERR@CHARLOTTESVILLE.GOV 434-970-3908 434-970-3800 (UTILITIES DISPATCH)

ENGINEER TY SMITH, P.E. HAZEN & SAWYER TSMITH@HAZENANDSAWYER.COM 470-427-7186

National Flood Hazard Layer FIRMette 😻 FEMA Legend Without Base Flood Elevation (BFE) With BFE or Depth zong AE. AO. AH. VE. AH SPECIAL FLOOD AZARD AREAS Regulatory Floodway 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainag areas of less than one square mile zone Future Conditions 1% Annual Chance Flood Hazard Zonn X Area with Reduced Flood Risk due to Levee. See Notes. June X ER A REAS OF DOD HAZARD NO SCREEN Area of Minimal Flood Hazard 2nm / Effective LOMRs THER AREAS Area of Undetermined Flood Hazard zmi GENERAL ---- Channel, Culvert, or Storm Sewer TRUCTURES IIIIII Levee, Dike, or Floodwall (6)-20.2 Cross Sections with 1% Annual Chance 17.5 Water Surface Elevation — — Doastal Transect Base Flood Elevation Line (B REA OF MINIMAL FLOOD HAZARD Limit of Study Jurisdiction Boundar ----- Coastal Transect Baseline HARIOTTESL OTHER _ ____ Profile Baseline FEATURES Hydrographic Feature Digital Data Available No Digital Data Available IAP PANELS Linmapped The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location. his map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. he basemap shown complies with FEMA's basemap acouracy standards The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 6/3/2021 at 9:42 AM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or me superseded by new data over time map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labe legend, scale bar, map creation date, community identifiers. FIRM panel number, and FIRM effective date. Map images for 1:6.000 regulatory purposes. 0 250 500 1,000 1,500

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

CITY OF CHARLOTTESVILLE CHARLOTTESVILLE, VIRGINIA

HAZEN NO.: 32571-003 HAZEN CONTRACT NO.: 202827 **APRIL 2022**

VICINITY MAP NTS

CHRISTOPHEI W. TABOR Lic. No.033020

HAZEN AND SAWYER 1555 ROSENEATH ROAD RICHMOND, VA, 23230

DRAWING INDEX					
DRAWING NUMBER	DRAWING TITLE				
GENERAL					
G1	COVER SHEET AND DRAWING INDEX				
G2	ABBREVIATION, CIVIL LEGEND, GENERAL NOTES				
G3	EROSION AND SEDIMENT CONTROL NOTES				
CIVIL					
C1	SCHENKS BRANCH TRIBUTARY SITE KEY MAP				
C2	EXISTING CONDITIONS SURVEY AND DEMOLITION PLANS - 1 OF 3				
C3	EXISTING CONDITIONS SURVEY AND DEMOLITION PLANS - 2 OF 3				
C4	EXISTING CONDITIONS SURVEY AND DEMOLITION PLANS - 3 OF 3				
C5	TREE REMOVAL TABLES				
C6	STREAM CENTERLINE STAKE-OUT PLAN & TABLE				
C7	SCHENKS BRANCH TRIBUTARY STREAM RESTORATION PLAN AND PROFILE - 1 OF 2				
C8	SCHENKS BRANCH TRIBUTARY STREAM RESTORATION PLAN AND PROFILE - 2 OF 2				
C9	UNNAMED TRIBUTARY STREAM RESTORATION PLAN AND PROFILE				
C10	STREAM PROFILE AND STRUCTURE TABLE				
C11	CROSS SECTION INDEX				
C12	SCHENKS BRANCH TRIBUTARY STREAM RESTORATION CROSS SECTIONS				
C13	UNNAMED TRIBUTARY STREAM RESTORATION CROSS SECTIONS				
C14	INITIAL PHASE, EROSION AND SEDIMENT CONTROL PLANS				
C15	FINAL PHASE, EROSION AND SEDIMENT CONTROL PLANS				
C16	LANDSCAPING PLAN - 1 OF 2				
C17	LANDSCAPING PLAN - 2 OF 2				
DETAILS					
CD1	TYPICAL STREAM CROSS SECTIONS				
CD2	ROCK SIZING TABLE				
CD3	RIFFLE GRADE CONTROL STRUCTURE				
CD4	CROSS VANE				
CD5	J-HOOK VANE				
CD6	TOE WOOD				
CD7	SOIL LIFT				
CD8	ROCK CASCADE				
CD9	EROSION AND SEDIMENT CONTROL DETAILS - 1 OF 3				
CD10	EROSION AND SEDIMENT CONTROL DETAILS - 2 OF 3				
CD11	EROSION AND SEDIMENT CONTROL DETAILS - 3 OF 3				
CD12	POLLUTION PREVENTION PLAN				
CD13	LANDSCAPING DETAILS				
CD14	LANDSCAPING NOTES AND PERMANENT SEED MIX				
CD15	LANDSCAPING SCHEDULE				

FILTER BAG
INLET PROTECTION
STAGING AREA
PUMP
ROCK OUTLET PROTECTION
SAND BAG DIVERSION
SILT FENCE
TEMPORARY PUMP AROUND

CE	STABILIZED CONSTRUCTION ENTRANCE
B/M	COIR MAT BIOD 70
CRS	ACCESS PATH
	STRAW AND SEED
MU	MULCH
TS	TEMPORARY SEED
PS	PERMANENT SEED

TOPSOILING

TPF -

REVEGETATION / PLANTING ZONES AND STABILIZATION

PROJECT

ENGINEER

DESIGNED BY

DRAWN BY:

CHECKED BY:

IF THIS BAR DOES NOT

NOT TO FULL SCALE

MEASURE 1" THEN DRAWING IS

TREE PROTECTION FENCE

ZONE 1 - STREAM TOE TO BACK OF BANKFULL BENCH

ZONE 2 - BACK OF BANKFULL

DATE

TR

ZONE 3 - EDGE OF GRADING TO EDGE OF DISTURBANCE

(TO)

ISSUED FOR

ZONE 4 - SANITARY SEWER EASEMENT AND TEMPORARY CONSTRUCTION ROADWAY

C. TABOR

T. SMITH

S. KANE

T. SCHUELER

1/2"

100% DESIGN -ISSUED

FOR CONSTRUCTION

Lic. No. 63968

TYLER W.

SMITH

ABBREVIATIONS

- ABANDONED BORING BID ITEM
- **BEGINNING POINT** CASCADE
- CURB INLET CROSS WEIR
- DIAMETER AT BREAST HEIGHT END POINT
- **EROSION & SEDIMENT CONTROL ENDWALL**
- EXISTING FILTER BAG
- FLARED END SECTION HAZEN AND SAWYER
- HEADWALL INVERT
- IMBRICATED ROCK WALL J-HOOK VANE
- LIMIT OF DISTURBANCE MANHOLE ARMORING
- MANHOLE
- POOL, PUMP POINT OF CURVE
- POINT OF COMPOUND CURVE
- POINT OF INTERSECTION PLUNGE POOL
- POINT OF REVERSE CURVE PROPOSED
- POINT OF TANGENT
- RIFFLE GRADE CONTROL REINFORCED CONCRETE PIPE **RIGHT-OF-ENTRY**
- ROCK OUTLET PROTECTION **RIGHT-OF-WAY**
- ROCK PACK
- SANITARY STREAM BED MATERIAL
- STABILIZED CONSTRUCTION ENTRANCE STORM MANHOLE
- SILT FENCE
- STEP POOL STEP POOL STORM CONVEYANCE
- SUPER SILT FENCE TEMPORARY PUMP AROUND
- TREE PROTECTION FENCE
- TOE WOOD MEASURE BANKFULL WIDTH WETLAND CELL
- YEAR

DEMOLITION

- TREE TO BE REMOVED
- DIRT TRAIL TO BE REMOVED

- GENERAL NOTES:
 - ATTENTION OF THE ENGINEER FOR RESOLUTION PRIOR TO THE COMMENCEMENT OF WORK.
- CONTRACTOR SHALL OBTAIN ALL THE NECESSARY PERMITS FROM THE APPROPRIATE AUTHORITIES, DEPARTMENTS, AND/OR AGENCIES HAVING JURISDICTION PRIOR TO COMMENCING WORK.
- 3. UTILITIES NOT INDICATED TO BE DEMOLISHED OR REMOVED SHALL BE REPAIRED AT THE CONTRACTOR'S EXPENSE.
- REQUEST UTILITY LOCATION MARK-OUT FROM BURIED UTILITY OWNERS WITH UTILITIES ON THE PROJECT SITE THAT ARE NOT PARTICIPANTS OF VIRGINIA 811.
- 5 COORDINATE WITH THE UTILITY FOR SUPPORT OF THE POLE.
- WHERE OVERHEAD POWER LINES ARE PRESENT, CONTRACTOR MUST CONTACT THE UTILITY PRIOR TO CONSTRUCTION ACTIVITIES TO DETERMINE THE MINIMUM REQUIRED EQUIPMENT CLEARANCE (MEC) DISTANCE BASED UPON LINE STRENGTH.
- ENGINEER IN THE STATE OF VIRGINIA AS MAY BE NECESSARY TO COMPLY WITH THESE REGULATIONS.
- ALL MATERIALS, CONSTRUCTION METHODS, AND WORKMANSHIP SHALL CONFORM WITH THE LATEST VERSION OF THE FOLLOWING STANDARDS: CITY OF CHARLOTTESVILLE STANDARDS AND DESIGN MANUAL (LATEST EDITION).
- 10. ALL TEMPORARY FACILITIES ARE SUBJECT TO THE SAME HEALTH AND SAFETY REQUIREMENTS AS PERMANENT FACILITIES, AS SPECIFIED IN THE CONTRACT DOCUMENTS AND HEALTH SAFETY PLAN (HASP), IF PRESENT. 11. THE CONTRACTOR SHALL REMOVE AND DISPOSE OF ALL DEBRIS GENERATED DURING THE PROJECT OFF SITE AT A PROPERLY PERMITTED DISPOSAL FACILITY
- 12.
- SHALL REPLACE PROPERTY IRONS, MONUMENTS, AND OTHER PERMANENT POINTS OF REFERENCE DESTROYED BY THE CONTRACTOR.
- 13. CONTRACTOR SHALL ABIDE BY ALL APPLICABLE OSHA REGULATIONS.
- CONTRACTOR REQUIREMENTS:
- 1. WORK REQUIRED UNDER THIS CONTRACT INCLUDES FURNISHING ALL LABOR, MATERIALS, EQUIPMENT, AND INCIDENTALS REQUIRED FOR THE CONSTRUCTION VEGETATION DISTURBANCE OF THE SCHENKS BRANCH TRIBUTARY STREAM RESTORATION PROJECT. THE PURPOSE OF THIS PROJECT IS TO STABILIZE STREAM BANKS AND IMPROVE WATER QUALITY. WORK SHALL INCLUDE GRADING, IN-STREAM STRUCTURES, PLANTING, APPLICABLE PERMITS, AND EROSION CONTROL MEASURES.
- 2. GENERAL CONTRACTORS BIDDING AND WORKING ON THIS PROJECT MUST BE VIRGINIA LICENSED CONTRACTORS.
- 3. THE CONTRACTOR SHALL MAKE HIS OWN DETERMINATION OF THE EXISTING SUBSURFACE CONDITIONS. ANY SUBSURFACE INVESTIGATION REPORTS ARE PROVIDED FOR INFORMATIONAL PURPOSES ONLY. EXISTING SOIL CONDITIONS ON THE PROJECT SITE MAY INCLUDE AREAS OF SATURATED SOILS. CONTRACTOR SHALL INCLUDE PROVISIONS FOR WORKING WITH WET SOILS IN HIS BID.
- 4. CONTRACTOR SHALL VERIFY WORK IN THE FIELD AND SHALL SATISFY HIMSELF AS TO THE ACCURACY BETWEEN WORK SET FORTH ON THESE PLANS AND WORK REQUIRED IN FIELD. ANY DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE OWNER'S REPRESENTATIVE IN WRITING AT LEAST SEVEN DAYS PRIOR TO THE START OF CONSTRUCTION.
- 5. CONTRACTOR SHALL HAVE AN APPROVED SET OF PLANS, SHOP DRAWINGS, AND SPECIFICATIONS ON THE JOBSITE AT ALL TIMES. SURVEY EQUIPMENT MU BE KEPT ON SITE AT ALL TIMES

SURVEY INFORMATION:

- . THE BASE SURVEY INFORMATION FOR THIS SITE WAS PERFORMED BY DRAPER ADEN ASSOCIATES FROM CHARLOTTESVILLE, VIRGINIA (434-295-0700) UNDE THE SUPERVISION OF C.A. STOCKTON (PLS LIC NO. 02425) IN JULY 2021. SURVEY HORIZONTAL AND VERTICAL CONTROLS ARE BASED ON VIRGINIA STATE PLANE SOUTH NAD83 AND NAVD88. SITE CONDITIONS MAY HAVE CHANGED FROM THOSE SHOWN IN THESE DRAWINGS. THE CONTRACTOR IS RESPONSIBLE FOR VERIEVING
- 2. TOPOGRAPHIC DATA SHOWN ON THESE PLANS IS FOR THE INFORMATION OF THE CONTRACTOR. THE CONTRACTOR SHALL MAKE SUCH ADDITIONAL INVESTIGATIONS AS REQUIRED TO ACQUAINT HIMSELF ADEQUATELY WITH THE SITE'S TOPOGRAPHY AND SUBSURFACE CONDITIONS FOR THE PREPARATIC OF HIS BID AND FOR THE SUCCESSFUL EXECUTION OF HIS WORK.
- 3. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL SURVEY REQUIREMENTS OF THIS PROJECT AND SHALL USE A VIRGINIA LICENSED LAND SURVEYOR
- 4. THE BASE SURVEY INFORMATION FOR THIS SITE WAS PERFORMED BY DRAPER ADEN ASSOCIATES FROM CHARLOTTESVILLE, VA (434-295-0700) BETWEEN J 2021 AND SEPTEMBER 2021. SITE CONDITIONS MAY HAVE CHANGED FROM THOSE SHOWN IN THESE DRAWINGS. CONTRACTOR IS RESPONSIBLE FOR VFRIFYING
- 5. SURVEY HORIZONTAL AND VERTICAL CONTROL BASED ON VIRGINIA STATE PLANE SOUTH NAD83 AND NAVD 88, ALL STATIONING AND DISTANCES INDICATE ON THE DRAWINGS ARE BASED ON HORIZONTAL MEASUREMENTS.
- 6. SURVEY MONUMENTS DISTURBED BY THE CONTRACTOR SHALL BE RESET BY A PROFESSIONAL LAND SURVEYOR LICENSED IN THE STATE OF VIRGINIA. PR TO DISTURBANCE. CONTACT MONUMENT OWNER TO VERIFY LOCATION OF EXISTING MONUMENT.
- 7. GIS CONTOURS BEYOND FIELD SURVEY ARE FROM 2018 AND WERE PROVIDED BY THE CITY OF CHARLOTTESVILLE. CONTOURS BEYOND FIELD SURVEY ARE PROVIDED FOR REFERENCE ONLY.

8. CONTRACTOR SHALL NOT DISTURB AREA WITHIN THE NORFOLK SOUTHERN RIGHT OF WAY.

PERMITTING NOTES:

- THE CONTRACTOR IS RESPONSIBLE FOR OBTAINING CITY LAND DISTURBANCE PERMIT, AND ADHERING TO ALL CITY, STATE, AND FEDERAL PERMIT REQUIREMENTS, AND SHALL MAKE ALL NOTIFICATIONS AS REQUIRED.CONTRACTOR SHALL COORDINATE WITH OWNER'S REPRESENTATIVE PRIOR TO STARTING WORK.
- 2. THE STREAM THAT IS BEING IMPROVED AS PART OF THIS PROJECT IS LIKELY JURISDICTIONAL WATERS OF THE UNITED STATES. THE EXTENTS OF THE JURISDICTIONAL WATERS ARE SHOWN ON THE OVERALL SITE PLAN. A NATIONWIDE PERMIT FROM THE US ARMY CORPS OF ENGINEERS IS REQUIRED FOR CONSTRUCTION OF THIS PROJECT.
- 3. CONTRACTOR SHALL OBTAIN AND PROVIDE PROOF OF COVERAGE UNDER THE STATE CONSTRUCTION GENERAL PERMIT. A DRAFT SWPPP IS PROVIDED AS PART OF THE CONTRACT DOCUMENTS WHICH SHALL BE UPDATED BY THE CONTRACTOR FOR SUBMISSION AND USE.

STORMWATER NOTES:

- 1. FLOODPLAIN AND REGULATORY FLOODWAY EXISTS AS SHOWN ON FIRM PANEL 51003C0286D, EFFECTIVE FEBRUARY 4, 2005.
- 2. IT WAS DETERMINED BY THE ENGINEER THAT THERE ARE WETLANDS LOCATED ON THE PROJECT SITE.
- 3. WETLAND CERTIFICATION: THE DESIGN PROFESSIONAL, WHOSE SEAL APPEARS HEREON, CERTIFIES THE FOLLOWING: 1) THE NATIONAL WETLAND INVENTO MAPS HAVE BEEN CONSULTED; AND, 2) THE APPROPRIATE PLAN DRAWING DOES INDICATE AREAS OF UNITED STATES ARMY CORPS OF ENGINEERS JURISDICTIONAL WETLANDS AS SHOWN ON THE MAPS: AND. 3) IF WETLANDS ARE INDICATED. THE LAND OWNER OR DEVELOPER HAS BEEN ADVISED THAT LAND DISTURBANCE OF PROTECTED WETLANDS SHALL NOT OCCUR UNLESS THE APPROPRIATE FEDERAL WETLANDS ALTERATION (SECTION 404) PERMIT H BEEN OBTAINED.
- 4. MAXIMUM SLOPE FOR CUT OR FILL IS 2H:1V UNLESS OTHERWISE SPECIFIED IN THE CONTRACT DOCUMENTS
- 5. APPROVAL OF THESE PLANS DOES NOT CONSTITUTE APPROVAL BY THE CITY OF CHARLOTTESVILLE OF ANY LAND DISTURBING ACTIVITIES WITHIN WETLAN AREAS. IT IS THE RESPONSIBILITY OF THE PROPERTY OWNER TO CONTACT THE APPROPRIATE REGULATORY AGENCY FOR APPROVAL OF ANY WETLAND A DISTURBANCE.

UTILITY NOTES:

- 1. THE EXISTING UTILITIES SHOWN AND INDICATED ON THE DRAWINGS ARE FOR GENERAL INFORMATION ONLY. THE CONTRACTOR SHALL BE RESPONSIBLE F VERIFICATION OF EXISTING UNDERGROUND UTILITIES. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ANY DAMAGE OR DISRUPTION OF UTILITY SERVICE DURING CONSTRUCTION. THE CONTRACTOR SHALL CONTACT MISS UTILITY OR VIRGINIA 811 AND/OR OWNERS OF THE UTILITIES TO VERIFY THE LOCATION ALL UTILITIES PRIOR TO BEGINNING CONSTRUCTION.
- 2. CONTRACTOR IS TO MAINTAIN CONTINUOUS UTILITY SERVICES TO ALL LOCATIONS IN THE PROJECT AREA.
- 3. THE CONTRACTOR SHALL PROVIDE ACCESS TO UTILITY COMPANIES FOR MAINTENANCE AND WORK ON THEIR UTILITIES DURING THE COURSE OF CONSTRUCTION.
- 4. THE CONTRACTOR SHALL NOTIFY UTILITY COMPANIES WHOSE LINES ARE WITHIN THE PROJECT AREA, PRIOR TO CONSTRUCTION, AND SHALL COORDINATE ANY RELOCATION OF THE EXISTING UTILITIES, UNLESS OTHERWISE SPECIFIED ON THE PLANS. ANY CONFLICTS WITH THE EXISTING UTILITIES WHICH ARE N NOTED ON THE PLANS SHALL BE RESOLVED BETWEEN THE CONTRACTOR AND THE RESPECTIVE UTILITY COMPANY AT NO COST TO THE OWNER. ALL SUCH RELOCATIONS SHALL BE NOTED ON THE AS-BUILT DRAWINGS.
- 5. BEFORE BEGINNING CONSTRUCTION, THE CONTRACTOR SHALL PROTECT ALL UTILITIES FROM DAMAGE CAUSED BY CONTRACTOR'S OPERATIONS AND/OR RELATED WORK OF THE CONTRACTOR OR HIS AGENT IN ACCORDANCE WITH THE PLANS AND SPECIFICATIONS. CONTRACTOR SHALL BE RESPONSIBLE FOF ANY REPAIRS TO DAMAGED UTILITIES AT HIS OWN EXPENSE. CONTRACTOR SHALL HOLD HARMLESS THE ENGINEER AND THE OWNER FOR ANY INCONVENIENCE OR DELAY CAUSED BY THE OPERATIONS OF OTHERS IN PERFORMING THE ABOVE WORK.THE CONTRACTOR SHALL COORDINATE HIS WOR WITH OTHERS TO PROVIDE SATISFACTORY PROGRESS IN THE PROJECT AREA.
- UTILITY LATERALS ARE SPECIFICALLY EXCLUDED FROM THESE DRAWINGS. THESE UTILITY LATERALS INCLUDE BURIED WATER, SEWER, GAS, ELECTRIC, TELEVISION AND TELEPHONE SERVICES, STREET LIGHTING, AND TRAFFIC LOOP DETECTORS. THE CONTRACTOR SHALL LOCATE AND PROTECT ALL SUCH FACILITIES. THE CONTRACTOR IS RESPONSIBLE FOR REPAIRING ALL SUCH FACILITIES THAT ARE DAMAGED DURING CONSTRUCTION. PAYMENT FOR LOCAT PROTECTING, COORDINATING, AND REPAIRING EXISTING FACILITIES WILL BE INCLUDED IN OTHER ITEMS OF WORK AND NO ADDITIONAL COMPENSATION W BE MADE THEREFORE ALL REPAIRS SHALL BE MADE IN ACCORDANCE WITH STANDARDS AND REQUIREMENTS OF THE UTILITY OWNER. UTILITY SUPPORT METHODS SHALL BE SUBMITTED TO OWNER'S REPRESENTATIVE PRIOR TO CONSTRUCTION FOR APPROVAL

CITY OF CHARLOTTESVILLE CHARLOTTESVILLE, VIRGINIA

SCHENKS BRANCH TRIBUTARY STREAM **RESTORATION PROJECT**

CONTRACTOR SHALL VERIFY FIELD CONDITIONS BEFORE COMMENCEMENT OF ANY CONSTRUCTION ACTIVITIES. CONTRACTOR SHALL VERIFY EXISTING ELEVATIONS AND DIMENSIONS WHERE NEW WORK WILL MATCH EXISTING. DISCREPANCIES SHALL BE BROUGHT TO THE

CONTRACTOR SHALL TAKE CARE TO AVOID DAMAGE TO EXISTING PAVEMENT, TREES, VEGETATION, STRUCTURES, AND UTILITIES THAT ARE NOT INDICATED TO BE DEMOLISHED OR REMOVED. ANY DAMAGE TO EXISTING PAVEMENT, TREES, VEGETATION, STRUCTURES, AND

UTILITIES HAVE BEEN PLOTTED FROM AVAILABLE SURVEY INFORMATION AND RECORD DATA. IT IS THE CONTRACTOR'S RESPONSIBILITY TO VERIFY THEIR EXACT LOCATION AND TO AVOID DAMAGE TO THEM. THE CONTRACTOR SHALL CONTACT VIRGINIA 811 AT PHONE NUMBER 811 OR 1-800-552-7001 TO REQUEST UNDERGROUND UTILITY LOCATION MARK-OUT AT LEAST THREE (3) WORKING DAYS PRIOR TO BEGINNING EXCAVATION, INCLUDING SOIL DRILLING. THE CONTRACTOR SHALL ALSO CONTACT AND

WHERE PROPOSED WORK IS IN THE VICINITY OF UTILITY POLES, SUCH THAT SUPPORT OF THE POLE(S) WILL BE REQUIRED, THE CONTRACTOR SHALL BE RESPONSIBLE FOR NOTIFYING THE UTILITY OF THE WORK. IT WILL BE THE RESPONSIBILITY OF THE CONTRACTOR TO

DURING EXCAVATION AND PLACEMENT OF UTILITIES THE CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE SAFETY REGULATIONS AND SHALL SUBMIT TO THE ENGINEER FOR APPROVAL SHEET PILING, SHORING AND/OR BRACING DESIGNS PREPARED BY A PROFESSIONAL

GROUNDWATER FROM ALL DE-WATERING OPERATIONS SHALL BE DISCHARGED THROUGH A SEDIMENT FILTERING DEVICE TO AN ENVIRONMENTALLY ACCEPTABLE LOCATION IN ACCORDANCE WITH THE CONTRACT DOCUMENTS, OR AS DIRECTED BY THE ENGINEER.

CONTRACTOR SHALL MAKE EVERY EFFORT TO SAVE AND MAINTAIN ALL PROPERTY IRONS, MONUMENTS, OTHER PERMANENT POINTS AND LINES OF REFERENCE AND CONSTRUCTION STAKES. A STATE OF VIRGINIA REGISTERED LAND SURVEYOR AT THE CONTRACTOR'S EXPENSE

	1.	TREES SHALL NOT BE DAMAGED OR REMOVED UNLESS OTHERWISE SPECIFIED ON THE DRAWINGS OR APPROVED IN WRITING BY OWNER'S REPRESENTATIVE. LANDSCAPING NOT DESIGNATED FOR REMOVAL THAT IS DAMAGED DURING CONSTRUCTION SHALL BE RESTORED WITH THE SAME VARIETIES AND AGE OF EXISTING LANDSCAPE VEGETATION AND PLANTS. THE CONTRACTOR SHALL NOT DISTURB AND SHALL PROTECT ALL TREES AND SHRUBS OUTSIDE OF CONSTRUCTION LIMITS, IN ADDITION TO THOSE THAT RECEIVE ORANGE BARRIER FENCE INSIDE PROJECT LIMITS.
THE	2.	THE CONTRACTOR SHALL CONDUCT OPERATIONS IN SUCH A MANNER AS TO PREVENT INJURY TO EXISTING VEGETATION THAT IS TO REMAIN GROWING. IF ANY INJURIES TO VEGETATION OCCUR, BROKEN BRANCHES SHALL BE REMOVED AND ROUGH EDGES AND SCARRED LIMBS SHALL BE SHAPED, MADE SMOOTH, AND OTHERWISE REPAIRED. ANY VEGETATION THAT IS DAMAGED TO SUCH AN EXTENT AS TO DESTROY THEIR VALUE FOR LANDSCAPE PURPOSES SHALL BE REMOVED, DISPOSED OF, AND REPLACED BY THE CONTRACTOR AT HIS OWN EXPENSE. GRASS OR GROUND COVER THAT IS DAMAGED SHALL BE SEEDED AND MULCHED AND/OR SODDED TO MATCH EXISTING AGE AND SPECIES BY THE CONTRACTOR AT HIS OWN EXPENSE.
ST	3.	CONSTRUCTION DEBRIS AND TREES THAT HAVE BEEN DAMAGED OR FELLED SHALL BE REMOVED OFF SITE BY THE CONTRACTOR UNLESS OTHERWISE SPECIFIED FOR USE ON-SITE.
	4.	ALL WASTE, SEDIMENT, DEBRIS, BRUSH, DISCARDED MATERIALS, AND RUBBISH SHALL BE HAULED OFF THE PROJECT SITE NO LESS THAN ONCE PER WEEK. EXISTING SITE MAY CONTAIN RUBBISH THAT SHALL BE REMOVED PRIOR TO SITE GRADING. ANY MATERIAL REMOVED FROM THE SITE SHALL BE DISPOSED OF IN A LAWFUL MANNER AT STATE OR CITY APPROVED AND PERMITTED DISPOSAL SITE(S).
ER -	5.	NON-VEGETATIVE MATERIAL IS TO BE REMOVED MANUALLY.
-	6.	A COMMERCIAL APPLICATOR LICENSE AND A PESTICIDE CONTRACTOR LICENSE ARE REQUIRED BY THE CONTRACTOR IF THE USE OF HERBICIDES ARE NECESSARY FOR NOXIOUS PLANT MATERIAL REMOVAL.
ON	JO	B SITE CONDITIONS:
	1.	IN ACCORDANCE WITH GENERALLY ACCEPTED CONSTRUCTION PRACTICES, THE CONTRACTOR WILL BE SOLELY AND COMPLETELY RESPONSIBLE FOR THE CONDITIONS AT THE JOB SITE, INCLUDING SAFETY OF ALL PERSONS AND PROPERTY DURING PERFORMANCE OF THE WORK.THIS REQUIREMENT WILL APPLY CONTINUOUSLY AND SHALL NOT BE LIMITED TO NORMAL WORKING HOURS.
UNE	2.	THE CONTRACTOR IS RESPONSIBLE FOR SECURING THE WORK SITE AGAINST TRESPASSING, VANDALISM, DUMPING, AND THEFT.
D	3.	CONTRACTOR SHALL MAINTAIN STORM DRAINAGE DURING CONSTRUCTION. THE CONTRACTOR SHALL ENSURE POSITIVE DRAINAGE TO AND THROUGH EXISTING DRAINAGE FACILITIES FROM ALL DISTURBED AREAS BOTH DURING AND AT THE COMPLETION OF THE PROJECT.
	EA	SEMENT NOTES:
	1.	ALL EASEMENTS THAT LIE WITHIN THE LIMITS OF CONSTRUCTION AS SHOWN ON THE DRAWINGS HAVE BEEN SECURED FOR THIS PROJECT. THE CONTRACTOR'S ACTIVITIES SHALL OCCUR ONLY WITHIN THE CONSTRUCTION LIMITS.
-	2.	THE CONTRACTOR SHALL NOT ACCESS THE WORK FOR THIS PROJECT EXCEPT OVER PUBLIC RIGHT-OF-WAYS OR OVER ROUTES AT SPECIFIC ACCESS POINTS THAT ARE AGREED UPON IN WRITING BETWEEN THE CONTRACTOR AND PROPERTY OWNERS.
	<u>CC</u>	DNSTRUCTION METHODS:
	1.	CONTRACTOR SHALL EXECUTE THE WORK DURING WEEKDAYS, MONDAY THROUGH FRIDAY, BETWEEN THE HOURS OF 8:00 A.M. AND 6:00 P.M. WITH THE EXCEPTION OF BYPASS PUMPING AND DEWATERING UNLESS OTHERWISE NOTED OR AS DETERMINED BY THE OWNER'S REPRESENTATIVE.
	2.	CONTRACTOR SHALL NOTIFY OWNER'S REPRESENTATIVE OF ALL ACTIVITIES THAT SIGNIFICANTLY AFFECT NOISE LEVELS OR TRAFFIC IN THE AREA.
THE	3.	PRIOR TO STREAM RESTORATION CONSTRUCTION, CONTRACTOR SHALL PROVIDE STAKEOUT OF CHANNEL CENTERLINE AND STRUCTURES, BY A VIRGINIA LICENSED LAND SURVEYOR FOR REVIEW AND APPROVAL BY THE OWNER'S REPRESENTATIVE AS REQUIRED PER THE SPECIFICATIONS. OWNER'S REPRESENTATIVE TO PROVIDE ELECTRONIC FILES FOR CONTRACTOR'S USE IN ESTABLISHING STAKING.
6	4.	ALL WORK ACTIVITIES SHOULD ALLOW FOR THE REMOVAL OF EQUIPMENT AND BARRIERS THAT MAY RESTRICT STREAM FLOW FROM THE EXISTING CHANNEL AND/OR ANY PART OF THE PROPOSED CHANNEL WHICH HAS BEEN "ACTIVATED" DURING "NON-WORKING" HOURS, WEEKENDS, AND STORM EVENTS.
	5.	THE CONTRACTOR SHALL DISPOSE OF WASTE SOIL OFF SITE, AT AN APPROVED SITE THAT MEETS ALL STATE AND LOCAL PERMITTING REQUIREMENTS. THE CONTRACTOR SHALL STOCKPILE EXCAVATION MATERIAL INACCORDANCE WITH VDOT STANDARD SPECIFICATIONS.
	6.	CONTRACTOR SHALL ACCESS THE WORK AREA VIA THE ACCESS ENTRANCE SHOWN ON DRAWINGS.
ORY	7.	TREE REMOVAL FOR STAGING AREAS AND ACCESS TO STREAM WILL NOT BE PERMITTED UNLESS SPECIFICALLY INDICATED ON THE DRAWINGS, OR APPROVED IN WRITING BY THE OWNER'S REPRESENTATIVE. THE CONTRACTOR SHALL STAKE OUT CONSTRUCTION LIMITS AND STAGING AREAS FOR APPROVAL BY OWNER'S REPRESENTATIVE PRIOR TO CLEARING.
HAS	8.	CONTRACTOR SHALL PROTECT EXISTING UTILITIES WHEN CROSSING FOR ACCESS. SANITARY SEWER UTILITY EASEMENTS MAY ONLY BE CROSSED AT DESIGNATED LOCATIONS AS SHOWN ON DRAWINGS.
۱D	9.	CONTRACTOR SHALL REPAIR ANY DAMAGE TO CURB, SIDEWALK, AND/OR ASPHALT THAT OCCURS AS A RESULT OF CONSTRUCTION ACTIVITIES. ALL DAMAGED ASSETS SHALL BE REMOVED, DISPOSED OF, AND REPLACED BY THE CONTRACTOR AT HIS OWN EXPENSE. UNLESS OTHERWISE SPECIFIED IN THE BID SCHEDULE.
REA	10.	GRADES, ELEVATIONS, AND LOCATIONS SHOWN ON THE PLANS FOR DRAINAGE STRUCTURES MAY BE MINIMALLY ADJUSTED DURING CONSTRUCTION AT CONTRACTOR'S EXPENSE AS DIRECTED BY THE OWNER'S REPRESENTATIVE TO ACCOMMODATE UNFORESEEN EXISTING CONDITIONS.
OR	11.	ALL FINAL GRADES SHALL SLOPE TOWARD THE STREAM CHANNEL, LEAVING NO DEPRESSIONS THAT WILL POND WATER UNLESS SPECIFICALLY INDICATED ON THE GRADING PLANS.
OF	12.	ALL CONSTRUCTION ACTIVITIES SHALL COMPLY WITH THE CITY OF CHARLOTTESVILLE STANDARDS.
	13.	CONTRACTOR SHALL NOTIFY THE CITY OF CHARLOTTESVILLE INSPECTIONS 24 HOURS BEFORE BEGINNING EVERY PHASE OF CONSTRUCTION, 434-970-3091.
=		
от I		
र		
RK		
'ING, ILI		

APRIL 202 DATE 32571-003 HAZEN NO .:

HAZEN CONTRACT NO.: 20282

ABBREVIATION, CIVIL LEGEND, GENERAL NOTES

GENERAL

DRAWING NUMBER:

EROSION AND SEDIMENT CONTROL NOTES:

- 1. DUE TO THE NATURE OF THE WORK REQUIRED BY THIS CONTRACT, IT IS ANTICIPATED THE LOCATION AND NATURE OF EROSION AND SEDIMENT CONTROL MEASU BE ADJUSTED AS CONSTRUCTION PROGRESSES TO REFLECT THE CURRENT PHASE OF WORK. THE CONSTRUCTION SCHEDULE ADOPTED BY THE CONTRACTOR W IMPACT THE PLACEMENT AND NEED FOR SPECIFIC DEVICES REQUIRED FOR THE CONTROL OF EROSION. THE LOCATION AND EXTENT OF EROSION AND SEDIMENT MEASURES SHALL BE REVISED AT EACH PHASE OF CONSTRUCTION RESULTING IN A CHANGE OF EITHER THE QUANTITY OR DIRECTION OF SURFACE RUNOFF FROM CONSTRUCTION AREAS. EROSION AND SEDIMENT CONTROL MEASURES SHALL REMAIN IN PLACE AT THE CONCLUSION OF THE PROJECT.
- 2. CONTRACTOR SHALL OBTAIN PRIOR APPROVAL FROM THE ENGINEER, OWNER, AND REGULATORY AGENCIES FOR DEVIATIONS FROM THE APPROVED EROSION ANI SEDIMENT CONTROL PLAN.
- 3. NO LAND DISTURBANCE, DEMOLITION OR CONSTRUCTION ACTIVITIES SHALL BEGIN UNTIL ALL PERIMETER EROSION AND SEDIMENT CONTROL MEASURES, INCLUDI NOT LIMITED TO, SILT FENCING, INLET PROTECTION, TEMPORARY DIVERSIONS, AND CONSTRUCTION ENTRANCE HAVE BEEN INSTALLED AS SHOWN ON THE CONTR DRAWINGS. IF CLEARING IS REQUIRED FOR INSTALLATION OF A PARTICULAR MEASURE, ALL MEASURES NOT REQUIRING CLEARING SHALL BE INSTALLED FIRST. CL OF THE NECESSARY LAND FOR INSTALLATION OF THE PARTICULAR MEASURE MAY THEN PROCEED.
- 4. CLEARING SHALL BE LIMITED AS MUCH AS POSSIBLE TO AREAS REQUIRED FOR CURRENT CONSTRUCTION ACTIVITIES. MASS CLEARING AND GRADING SHALL BE AN 5. ALL EROSION CONTROL MEASURES SHALL BE INSPECTED WITHIN 24 HOURS FOLLOWING EVERY RAINFALL BUT IN NO CASE LESS THAN ONCE EVERY SEVEN CALEM DAYS.
- 6. CONTRACTOR SHALL MONITOR FILTER BAGS WHILE IN USE
- 7. EROSION AND SEDIMENT CONTROL MEASURES SHALL BE REPAIRED OR REPLACED IMMEDIATELY AS REQUIRED TO MAINTAIN PERFORMANCE OF MEASURE. MEASU SHALL BE CLEANED WHEN SEDIMENT VOLUME REACHES 1/2 OF TOTAL VOLUME OF MEASURE. REMOVED SEDIMENT SHALL BE DISPOSED OF IN SUCH A MANNER AND LOCATION AS TO INSURE FURTHER SEDIMENT TRANSPORT DOES NOT OCCUR.
- CONTRACTOR SHALL INITIATE STABILIZATION MEASURES AS SOON AS PRACTICABLE ON STOCKPILES AND IN PORTIONS OF THE SITE WHERE CONSTRUCTION ACTI HAVE TEMPORARILY OR PERMANENTLY CEASED, BUT IN NO CASE MORE THAN 7 DAYS AFTER THE CONSTRUCTION ACTIVITY IN THAT PORTION OF THE SITE HAS TEMPORARILY OR PERMANENTLY CEASED. THIS REQUIREMENT DOES NOT APPLY IN THE FOLLOWING INSTANCES:

A) WHERE THE INITIATION OF STABILIZATION MEASURES BY THE 7TH DAY AFTER CONSTRUCTION ACTIVITY TEMPORARILY OR PERMANENTLY CEASED IS PRECLU SNOW COVER OR FROZEN GROUND CONDITIONS, STABILIZATION MEASURES SHALL BE INITIATED AS SOON AS PRACTICABLE;

B) WHERE CONSTRUCTION ACTIVITY ON A PORTION OF THE SITE IS TEMPORARILY CEASED, AND EARTH-DISTURBING ACTIVITIES WILL BE RESUMED WITHIN FOUR DAYS, TEMPORARY STABILIZATION MEASURES NEED NOT BE INITIATED ON THAT PORTION OF THE SITE.

- ALL DISTURBED AREAS SHALL DRAIN TO APPROVED SEDIMENT CONTROL MEASURES AT ALL TIMES DURING LAND DISTURBANCE ACTIVITIES AND UNTIL FINAL STAB IS ACHIEVED. SEDIMENT-LADEN GROUNDWATER ENCOUNTERED DURING TRENCHING, BORING, OR OTHER ACTIVITIES SHALL BE PUMPED INTO A SEDIMENT TRAPPI DEVICE PRIOR TO BEING DISCHARGED INTO A STREAM, POND, SWALE, OR CATCH BASIN.
- 10. SOIL STOCKPILE AND LAYDOWN AREAS SHALL HAVE PERIMETER SEDIMENT CONTROL MEASURES AND TEMPORARY OR PERMANENT STABILIZATION MEASURES INS AS SOON AS POSSIBLE AND AT COMPLETION OF STOCKPILING AND LAYDOWN ACTIVITIES. STOCKPILE SIDE SLOPES SHALL NOT EXCEED 3H; 1V UNLESS APPROVE ENGINEER. TOP OF STOCKPILE SHALL BE GRADED WITH A MINIMUM 5% SLOPE TO INSURE PROPER DRAINAGE.
- 11. ALL DISTURBED AREAS, EXCEPT FOR CONCRETE AND PAVED AREAS, SHALL BE FERTILIZED, SEEDED AND MULCHED IN ACCORDANCE WITH THE SPECIFICATIONS A SEEDING SCHEDULE, AND RE-SEEDED AS NECESSARY, TO ESTABLISH AND MAINTAIN A VIGOROUS, DENSE VEGETATIVE COVER.
- 12. ALL POINTS OF CONSTRUCTION INGRESS AND EGRESS SHALL BE PROTECTED TO PREVENT THE DEPOSITION OF MATERIALS ONTO TRAVERSED OFFSITE ROADWA MATERIAL IS TRACKED ONTO OFFSITE ROADWAYS, IT SHALL BE REMOVED IMMEDIATELY. DO NOT UTILIZE A WATER HOSE TO CLEAN ROADS UNLESS THE RUNOFF DIRECTED TO A PROPERLY DESIGNED AND FUNCTIONING SEDIMENT CONTROL DEVICE. PROPER PRECAUTIONS SHALL BE TAKEN TO ENSURE THAT MATERIALS DE ONTO OFFSITE ROADWAYS ARE REMOVED SO THAT THEY DO NOT ENTER YARD INLETS, CATCH BASINS, SEWERS, WETLANDS, SURFACE WATER BODIES, OR ROAD SWALES
- 13. WHERE CONCRETE EQUIPMENT WASHING IS REQUIRED, THIS MUST BE DONE IN AN APPROVED "CONCRETE CONTAINMENT AREA". CONTRACTOR SHALL NOT DISCH ANY CONCRETE WASHOUT WATER INTO SEWERS, SURFACE WATER BODIES OR ONTO THE GROUND. ALL WASHOUT WATER MUST BE REMOVED FROM THE SITE(S) 14. EARTHEN-MATERIAL STOCKPILES MUST BE LOCATED A MINIMUM OF 50' FROM STORM DRAINS AND STREAMS UNLESS NO REASONABLE ALTERNATIVES ARE AVAILA
- STOCKPILES SHALL BE LOCATED OUTSIDE OF CONTRACT DOCUMENT DEFINED FLOOD ZONES. 15. ALL EARTHEN STOCKPILES AND SURCHARGE MOUNDS GREATER THAN 10' IN HEIGHT OR HAVING SIDE SLOPES GREATER THAN 3:1 MUST BE ENCAPSULATED BY A CHAIN-LINK-BACKED SILT FENCE OR APPROVED ALTERNATIVE. THE FIRST ROW OF SILT FENCE SHALL BE SPACED NO GREATER THAN 10' FROM THE TOE OF THE MO THE SECOND ROW OF SILT FENCE SHALL BE SPACED 5' FROM THE FIRST ROW. IN THE EVENT THE SITE DOES NOT HAVE PERIMETER EROSION AND SEDIMENT CON INSTALLED, THEN DOUBLE ROW SILT FENCING IS REQUIRED REGARDLESS OF THE STOCKPILE OR SURCHARGE HEIGHT.
- 16. DEDICATED AREAS FOR DEMOLITION, CONSTRUCTION, AND OTHER WASTES MUST BE LOCATED A MINIMUM OF 50' FROM STORM DRAINS AND STREAMS UNLESS NO REASONABLE ALTERNATIVES ARE AVAILABLE.
- 17. PAVED ROADWAYS MUST BE KEPT CLEAN AT ALL TIMES. WATER SHALL NOT BE USED TO CLEAN ROADS UNLESS THE RUNOFF IS DIRECTED TO A PROPERLY DESIG FUNCTIONING SEDIMENT CONTROL DEVICE. WATER PUMPED OUT OF THE EXCAVATED AREAS CONTAINS SEDIMENTS THAT MUST BE REMOVED PRIOR TO DISCHAR RECEIVING BODIES OF WATER USING REMOVABLE PUMPING STATIONS, SUMP PITS, PORTABLE SEDIMENTATION TANKS AND/OR SILT CONTROL BAGS. 18. ALL EROSION AND SEDIMENT CONTROL MEASURES SHALL REMAIN IN PLACE UNTIL CONSTRUCTION IS COMPLETE, PERMANENT VEGETATION IS ESTABLISHED ON
- DISTURBED AREAS, AND LOCAL AUTHORITIES HAVE GIVEN PERMISSION FOR REMOVAL.
- 19. MATERIALS REUSED ON-SITE DURING CONSTRUCTION SHALL BE STORED BEYOND FLOOD PRONE AREAS UNTIL INSTALLED AND ACCEPTED IN PLACE.

SEQUENCE OF CONSTRUCTION:

PHASE 1: MOBILIZATION AND SITE PREPARATION (30 DAYS)

- 1. THE LIMITS OF WETLANDS MUST BE FLAGGED IN THE FIELD (SURVEY LOCATED) WITH OPTIC ORANGE SAFETY FENCE PRIOR TO ISSUANCE OF A LAND DISTURBANCE PERMIT
- 2. PROVIDE THE CITY INSPECTOR 48 HOURS NOTIFICATION TO SCHEDULE AN ON-SITE PRE-CONSTRUCTION MEETING FOR THE ISSUANCE OF THE LAND DISTURBANCE PERMIT. THE PRE-CONSTRUCTION MEETING MUST INCLUDE THE CONTRACTOR'S CERTIFIED RESPONSIBLE LAND DISTURBER (CRLD), OWI ENGINEER, VSMP CONSTRUCTION ACTIVITY OPERATOR, AND ENVIRONMENTAL INSPECTOR (OR AUTHORIZED REPRESENTATIVE)
- 3. PRIOR TO THE PRE-CONSTRUCTION MEETING, THE CONTRACTOR IS TO HAVE ALL LIMITS OF DISTURBANCE (LOD), ACCESS ROADS, TREES EARMARKED F STREAM STRUCTURES AND SEDIMENT AND EROSION CONTROL DEVICE LOCATIONS STAKED OUT IN THE FIELD FOR REVIEW AND APPROVAL BY THE CITY INSPECTOR AND ENGINEER.
- 4. AT THE TIME OF THE PRE-CONSTRUCTION MEETING, TWO STANDARD SIGNS MUST BE INSTALLED ON EACH SIDE OF THE CONSTRUCTION ACCESS. THESI SIGNS SHOULD STATE EITHER "CONSTRUCTION ENTRANCE AHEAD" OR "TRUCKS ENTERING HIGHWAY"
- 5. THE CONTRACTOR SHALL CONTACT VIRGINIA 811 AT PHONE NUMBER 811 OR 1-800-552-7001 TO REQUEST UNDERGROUND UTILITY LOCATION MARK-OUT LEAST THREE (3) WORKING DAYS BUT NO MORE THAN TEN (10) WORKING DAYS PRIOR TO BEGINNING EXCAVATION. THE CONTRACTOR SHALL ALSO CONT AND REQUEST UTILITY LOCATION MARK-OUT FROM BURIED UTILITY OWNERS WITH UTILITIES ON THE PROJECT SITE THAT ARE NOT PARTICIPANTS OF VIF 811
- INSTALL THE TEMPORARY CONSTRUCTION ENTRANCE AS SHOWN ON THE DRAWINGS. 7. INSTALL EROSION AND SEDIMENT CONTROL (ESC) MEASURES AS SHOWN ON THE DRAWINGS IN ACCORDANCE WITH THE VIRGINIA EROSION AND SEDIME CONTROL HANDBOOK (VESCH)
- 8. INSTALL FOREST CONSERVATION MEASURES INCLUDING, BUT NOT LIMITED TO, TREE SAVE FENCING AND TREE PROTECTION PLANKING. 9. THE CITY ENVIRONMENTAL ENGINEERING INSPECTOR MUST APPROVE PHASE 1 PRIOR TO CONTINUING TO THE NEXT PHASE OF CONSTRUCTION.

PHASE 2: CONSTRUCTION (60 DAYS)

- 10. FELL AND SECTION TREES AT APPROPRIATE LENGTHS THAT ARE EARMARKED FOR RE-USE IN THE J-HOOK VANE AND ROOT WAD STRUCTURES. STORE (SITE.
- 11. DEMOLISH EXISTING FEATURES AS SHOWN ON THE DRAWINGS AND COMPLETE SITE PREPARATION.
- 12. INSTALL PUMP AROUND #1 AND CONSTRUCT STREAMBANK STABILIZATION FROM STATION 99+50 TO 103+28. 13. ONCE WORK FROM PROPOSED STREAM STATION 99+50 TO 103+28 IS STABLE (TEMPORARY SEED COVERAGE OF 75% OR GREATER AND COIR MATTING INSTALLED/ACCEPTED), INSTALL PUMP AROUND #2 AND #3 CONSTRUCT STREAM WORK FROM STATION 103+28 TO 105+78 ALONG THE MAINSTEM AND FROM STATION 200+00 TO 200+62 ALONG THE TRIBUTARY.
- 14. ONCE WORK FROM PROPOSED STREAM STATION 103+28 TO 105+78 AND 200+00 TO 200+62 IS STABLE (TEMPORARY SEED COVERAGE OF 75% OR GREATE COIR MATTING INSTALLED/ACCEPTED), INSTALL PUMP AROUND #4 AND CONSTRUCT STREAM WORK FROM STATION 105+78 TO 107+69. 15. THE CITY INSPECTOR MUST APPROVE EACH PHASE PRIOR TO CONTINUING TO THE NEXT PHASE OF CONSTRUCTION.

PHASE 3: PLANTING, PUNCH LIST AND DEMOBILIZATION (45 DAYS)

- 16. UPON COMPLETION OF CONSTRUCTION, ALL DISTURBED AREAS SHALL BE FINE GRADED AND PERMANENTLY STABILIZED PER THE VESCH AND PLANTING PLANS, AS APPROPRIATE, PRIOR TO SCHEDULING FINAL INSPECTION.
- 17. SCHEDULE AND CONDUCT A PRE-PLANTING MEETING; SEE PLANTING PLAN. 18. PLANT AREAS DURING THE SPRING OR FALL GROWING SEASONS PER THE PLANTING PLANS, EXCEPT FOR LIVE STAKES WHICH CAN ONLY BE INSTALLED
- DURING THEIR DORMANCY (DECEMBER 1 TO MARCH 30). SOME PLANTINGS (E.G. PERMANENT SEEDING) WILL NEED TO OCCUR DURING EARLIER PHASES CONSTRUCTION AND STABILIZATION IS COMPLETED IN EACH AREA. 19. SCHEDULE AND CONDUCT AN ON-SITE PUNCHLIST WALK-THROUGH MEETING AND CORRECT ANY OUTSTANDING ITEMS.
- 20. ESC MEASURES SHALL NOT BE REMOVED UNTIL CONSTRUCTION IS COMPLETE AND APPROVAL IS OBTAINED FROM THE CITY INSPECTOR.
- 21. ONCE APPROVAL IS OBTAINED, REMOVE SEDIMENT CONTROL DEVICES INCLUDING TREE PROTECTION FENCE, PLANKING AND ANY MULCH USED IN THE ACCESS PATHS DOWN TO 4 INCHES WITHIN FOREST AREA. 22. SCEHDULE AND CONDUCT A FINAL PUNCH LIST WALK.

TOTAL ESTIMATED WORKING DAYS: 135 DAYS

F					PROJECT ENGINEER:	C. TABOR		
					DESIGNED BY:	T. SMITH		ANN NON
					DRAWN BY:	S. KANE	100% DESIGN - ISSUED	CO
					CHECKED BY:	T. SCHUELER	FOR CONSTRUCTION	PR Li
					IF THIS BAR DOES NOT MEASURE 1" THEN DRAWING IS	0 1/2" 1"		E.
	REV	ISSUED FOR	DATE	BY	NOT TO FULL SCALE			-1

RES WILL VILL	EROSION CONTROL NARRATIVE	9VAC25-840-40. MINIMUM STANDARDS. A VESCP MUST BE CONSISTENT WITH THE FOLLOWING CRITER
T CONTROL M THE	THE SCHENKS BRANCH TRIBTUARY PROJECT CONSISTS OF A CONSTRUCTION OF A	METHODS:
ID	PRIORITY II AND III STREAM RESTORATION TO STABILIZE 818 LF OF EXISTING IMPAIRED STREAM. THE TOTAL LAND DISTURBANCE FOR THIS PROJECT IS APPROXIMATELY 2.55 ACRES.	 PERMANENT OR TEMPORARY SOIL STABILIZATION SHALL E AREAS WITHIN SEVEN DAYS AFTER FINAL GRADE IS REACH SITE. TEMPORARY SOIL STABILIZATION SHALL BE APPLIED DENUDED AREAS THAT MAY NOT BE AT FINAL GRADE BUT
ING, BUT RACT	EXISTING SITE CONDITIONS	LONGER THAN 14 DAYS. PERMANENT STABILIZATION SHALL
EARING	THE SITE IS A PREDOMINANTLY FORESTED AREA THAT INCLUDES WALKING TRAILS,	2 DURING CONSTRUCTION OF THE PROJECT SOIL STOCK PIL
VOIDED. NDAR	SANITARY SEWER INFRASTRUCTURE, AND A GAS LINE.	SHALL BE STABILIZED OR PROTECTED WITH SEDIMENT TRA APPLICANT IS RESPONSIBLE FOR THE TEMPORARY PROTE STABILIZATION OF ALL SOIL STOCKPILES ON SITE AS WELL INTENTIONALLY TRANSPORTED FROM THE PROJECT SITE.
URES D	THE SITE IS BORDERED BY WOODED AREAS, ROADS, AND A NORFOLK SOUTHERN RAILROAD EMBANKMENT. THE SITE IS HOME TO THE FUTURE BOTANICAL GARDENS OF THE PIEDMONT.	 A PERMANENT VEGETATIVE COVER SHALL BE ESTABLISHE OTHERWISE PERMANENTLY STABILIZED. PERMANENT VEG CONSIDERED ESTABLISHED UNTIL A GROUND COVER IS AC MATURE ENOUGH TO SURVIVE AND WITH INTERESSION
IVITIES	OFF-SITE AREAS:	4. SEDIMENT BASINS AND TRAPS, PERIMETER DIKES, SEDIME
	NO OFF-SITE LAND DISTURBING ACTIVITIES ARE PLANNED. ANY OFF-SITE LAND DISTURBANCE ACTIVITIES WILL REQUIRE A SEPARATE PERMIT BY THE CONTRACTOR.	MEASURES INTENDED TO TRAP SEDIMENT SHALL BE CONS ANY LAND-DISTURBING ACTIVITY AND SHALL BE MADE FUN LAND DISTURBANCE TAKES PLACE.
	SOILS: SOILS WITHIN THE PROJECT AREA ARE CLASSIFIED BY NRCS' WEB SOIL SURVEY AND	5. STABILIZATION MEASURES SHALL BE APPLIED TO EARTHEI DAMS, DIKES AND DIVERSIONS IMMEDIATELY AFTER INSTA
TEEN (14)	ARE LISTED BELOW. ADDITIONAL SOIL CHARACTERISTICS FOR EACH TYPE CAN BE FOUND ON NRCS' WEB SOIL SURVEY.	6. SEDIMENT TRAPS AND SEDIMENT BASINS SHALL BE DESIG BASED UPON THE TOTAL DRAINAGE AREA TO BE SERVED B
BILIZATION	CODORUS SILT LOAM (16)	a. THE MINIMUM STORAGE CAPACITY OF A SEDIMENT TRA PER ACRE OF DRAINAGE AREA AND THE TRAP SHALL OF
ling	ELIOAK LOAM (27C)	AREAS LESS THAN THREE ACRES.
STALLED	UDORTHENTS (88)	 b. SURFACE RUNOFF FROM DISTURBED AREAS THAT IS CO DRAINAGE AREAS GREATER THAN OR EQUAL TO THREE
	CRITICAL EROSION AREAS:	CONTROLLED BY A SEDIMENT BASIN. THE MINIMUM STO SEDIMENT BASIN SHALL BE 134 CUBIC YARDS PER ACRE
AND THE .YS. IF IS	ALL DISTURBED AREAS WITHIN THE PROJECT SITE ARE CONSIDERED CRITICAL AREAS WHICH REQUIRE ACCELERATED RESTABILIZATION VIA BIOENGINEERING AND STREAM RESTORATION TECHNIQUES. THE CONSTRUCTION PLANS INCLUDE THESE MEASURES TO MINIMIZE DISTURBANCE OF AND PROVIDE IMMEDIATE EROSION STABILIZATION.	OUTFALL SYSTEM SHALL, AT A MINIMUM, MAINTAIN THE THE BASIN DURING A 25-YEAR STORM OF 24-HOUR DUR USED IN RUNOFF CALCULATIONS SHALL CORRESPOND OR THOSE CONDITIONS EXPECTED TO EXIST WHILE THE
EPOSITED ISIDE		7. CUT AND FILL SLOPES SHALL BE DESIGNED AND CONSTRU
		MINIMIZE EROSION. SLOPES THAT ARE FOUND TO BE EROD ONE YEAR OF PERMANENT STABILIZATION SHALL BE PROV
DAILY.	CONSTRUCTION ENTRANCE PER DWGS C14	STABILIZING MEASURES UNTIL THE PROBLEM IS CORRECT
ABLE.	SILT FENCE PER DWGS C14	 CONCENTRATED RUNOFF SHALL NOT FLOW DOWN CUT OF CONTAINED WITHIN AN ADEQUATE TEMPORARY OR PERMA
	TEMPORARY PUMP AROUND PER DWGS C14	SLOPE DRAIN STRUCTURE.
IOUND,. ITROLS	SAND BAG DIKE PER DWGS C14	 WHENEVER WATER SEEPS FROM A SLOPE FACE, ADEQUAT PROTECTION SHALL BE PROVIDED.
ſ	FILTER BAG PER DWGS C14 COIR MATTING PER DWGS C15	10. ALL STORM SEWER INLETS THAT ARE MADE OPERABLE DU
0	TREE PROTECTION FENCE PER DWGS C14	BE PROTECTED SO THAT SEDIMENT-LADEN WATER CANNO SYSTEM WITHOUT FIRST BEING FILTERED OR OTHERWISE
GNED AND RGING TO		SEDIMENT.
ALL	DISTURBED AREAS OF THE SITE WILL BE SEEDED, MULCHED AND STABILIZED WITH COIR MAT ACCORDING TO THE VIRGINIA EROSION AND SEDIMENT CONTROL HANDBOOK REQUIREMENTS AND THE PLANTING PLANS.	MADE OPERATIONAL, ADEQUATE OUTLET PROTECTION AN OR PERMANENT CHANNEL LINING SHALL BE INSTALLED IN CHANNEL AND RECEIVING CHANNEL.
		12. WHEN WORK IN A LIVE WATERCOURSE IS PERFORMED, PR
	STORMWATER RUNOFF CONSIDERATIONS: STORMWATER RUNOFF WILL NOT BE INCREASED WITH THE COMPLETION OF THIS PROJECT.	WORK AREA TO THE GREATEST EXTENT POSSIBLE DURING NONERODIBLE MATERIAL SHALL BE USED FOR THE CONST AND COFFERDAMS. EARTHEN FILL MAY BE USED FOR THES BY NONERODIBLE COVER MATERIALS.
	EROSION AND SEDIMENT CONTROL MAINTENANCE NOTES:	13. WHEN A LIVE WATERCOURSE MUST BE CROSSED BY CONS
	IN GENERAL, ALL EROSION AND SEDIMENT CONTROL MEASURES SHALL BE CHECKED AFTER EACH RAINFALL OR WEEKLY, WHICHEVER IS MORE FREQUENT, AND SHOULD BE	THAN TWICE IN ANY SIX-MONTH PERIOD, A TEMPORARY VE CONSTRUCTED OF NONERODIBLE MATERIAL SHALL BE PRO
NER,	CLEANED AND REPAIRED ACCORDING TO THE FOLLOWING SCHEDULE:	14. ALL APPLICABLE FEDERAL, STATE AND LOCAL REQUIREME
FOR (EROSION AND SEDIMENT CONTROLS WILL BE CHECKED REGULARLY FOR UNDERMINING OR DETERIORATION AND BUILDUP OR CLOGGING WITH SEDIMENT. CORRECTIVE ACTION SHALL BE TAKEN IMMEDIATELY. 	IN OR CROSSING LIVE WATERCOURSES SHALL BE MET. 15. THE BED AND BANKS OF A WATERCOURSE SHALL BE STAB WORK IN THE WATERCOURSE IS COMPLETED.
БЕ АТ	2. FREQUENT INSPECTIONS AND CLEANING OF MUD AND DEBRIS FOUND OUTSIDE OF THE LIMITS OF DISTURBANCE IS REQUIRED, ALONG WITH ANY OTHER REMEDIES REQUIRED BY THE CITY.	16. UNDERGROUND UTILITY LINES SHALL BE INSTALLED IN ACC FOLLOWING STANDARDS IN ADDITION TO OTHER APPLICAE
TACT RGINIA	3. ALL SEEDED AREAS WILL BE CHECKED REGULARLY TO SEE THAT A GOOD STAND OF GRASS IS MAINTAINED, AREAS SHALL BE RESERVED AS NEEDED, TEMPORARY	a. NO MORE THAN 500 LINEAR FEET OF TRENCH MAY BE O
	STABILIZATION WILL BE USED AS REQUIRED BY THE CITY.	c. EFELUENT FROM DEWATERING OPERATIONS SHALL BE
ENT	TABLE 6-1 (VIRGINIA EROSION AND SEDIMENT CONTROL	THROUGH AN APPROVED SEDIMENT TRAPPING DEVICE, IN A MANNER THAT DOES NOT ADVERSELY AFFECT FLO PROPERTY.
	HANDBOOK)	d. MATERIAL USED FOR BACKFILLING TRENCHES SHALL BE
	GENERAL EROSION AND SEDIMENT CONTROL NOTES	e. RESTABILIZATION SHALL BE ACCOMPLISHED IN ACCORE
NC	ES-1: UNLESS OTHERWISE INDICATED, ALL VEGETATIVE AND STRUCTURAL EROSION	f. APPLICABLE SAFETY REQUIREMENTS SHALL BE COMPL
	AND SEDIMENT CONTROL PRACTICES WILL BE CONSTRUCTED AND MAINTAINED ACCORDING TO MINIMUM STANDARDS AND SPECIFICATIONS OF THE VIRGINIA	17. WHERE CONSTRUCTION VEHICLE ACCESS ROUTES INTERS
	EROSION AND SEDIMENT CONTROL HANDBOOK AND THE VIRGINIA EROSION AND	VEHICULAR TRACKING ONTO THE PAVED SURFACE. WHER
OM	ES-2: THE PLAN APPROVING AUTHORITY MUST BE NOTIFIED ONE WEEK PRIOR TO THE	ONTO A PAVED OR PUBLIC ROAD SURFACE, THE ROAD SUF THOROUGHLY AT THE END OF EACH DAY. SEDIMENT SHAL
ER AND	PRE-CONSTRUCTION CONFERENCE, ONE WEEK PRIOR TO THE COMMENCEMENT OF LAND DISTURBING ACTIVITY, AND ONE WEEK PRIOR TO THE FINAL INSPECTION.	ROADS BY SHOVELING OR SWEEPING AND TRANSPORTED
	ES-3: ALL EROSION AND SEDIMENT CONTROL MEASURES ARE TO BE PLACED PRIOR TO OR AS THE FIRST STEP IN CLEARING.	REMOVED IN THIS MANNER. THIS PROVISION SHALL APPLY
	ES-4: A COPY OF THE APPROVED EROSION AND SEDIMENT CONTROL PLAN SHALL BE	18 ALL TEMPORARY EROSION AND SEDIMENT CONTROL MEAS
3	ES-5: PRIOR TO COMMENCING LAND DISTURBING ACTIVITIES IN AREAS OTHER THAN INDICATED ON THESE PLANS (INCLUDING, BUT NOT LIMITED TO, OFF-SITE BORROW OR WASTE AREAS), THE CONTRACTOR SHALL SUBMIT A SUPPLEMENTARY	WITHIN 30 DAYS AFTER FINAL SITE STABILIZATION OR AFTE MEASURES ARE NO LONGER NEEDED, UNLESS OTHERWISE AUTHORITY. TRAPPED SEDIMENT AND THE DISTURBED SO
AS	ERUSION CONTROL PLAN TO THE OWNER FOR REVIEW AND APPROVAL BY THE PLAN APPROVING AUTHORITY.	PREVENT FURTHER EROSION AND SEDIMENTATION.
	ES-0: THE CONTRACTOR IS RESPONSIBLE FOR INSTALLATION OF ANY ADDITIONAL EROSION CONTROL MEASURES NECESSARY TO PREVENT EROSION AND	19. PROPERTIES AND WATERWAYS DOWNSTREAM FROM DEVE PROTECTED FROM SEDIMENT DEPOSITION. EROSION AND
	SEDIMENTATION AS DETERMINED BY THE PLAN APPROVING AUTHORITY. ES-7: ALL DISTURBED AREAS ARE TO DRAIN TO APPROVED SEDIMENT CONTROL	IN VOLUME, VELOCITY AND PEAK FLOW RATE OF STORMWA
	MEASURES AT ALL TIMES DURING LAND DISTURBING ACTIVITIES AND DURING SITE DEVELOPMENT UNTIL FINAL STABILIZATION IS ACHIEVED	FOLLOWING STANDARDS AND CRITERIA. STREAM RESTOR
	ES-8: DURING DEWATERING OPERATIONS, WATER WILL BE PUMPED INTO AN APPROVED	PROJECTS THAT INCORPORATE NATURAL CHANNEL DESIG MAN-MADE CHANNELS AND SHALL BE EXEMPT FROM ANY F
	FILTERING DEVICE. ES-9: THE CONTRACTOR SHALL INSPECT ALL EROSION CONTROL MEASURES	VELOCITY REQUIREMENTS FOR NATURAL OR MAN-MADE C
	PERIODICALLY AND AFTER EACH RUNOFF-PRODUCING RAINFALL EVENT. ANY NECESSARY REPAIRS OR CLEANUP TO MAINTAIN THE EFFECTIVENESS OF THE	
	EROSION CONTROL DEVICES SHALL BE MADE IMMEDIATELY.	

Hazen TYLER W. SMITH ic. No. 63968 HAZEN AND SAWYER 1555 ROSENEATH ROAD RICHMOND, VA, 23230

SCHENKS BRANCH TRIBUTARY STREAM

CITY OF CHARLOTTESVILLE

CHARLOTTESVILLE, VIRGINIA

RESTORATION PROJECT

RIA, TECHNIQUES AND

BE APPLIED TO DENUDED HED ON ANY PORTION OF THE WITHIN SEVEN DAYS TO WILL REMAIN DORMANT FOR L BE APPLIED TO AREAS THAT a.

LES AND BORROW AREAS APPING MEASURES. THE ECTION AND PERMANENT

AS BORROW AREAS AND SOIL ED ON DENUDED AREAS NOT

ETATION SHALL NOT BE CHIEVED THAT IS UNIFORM,

ENT BARRIERS AND OTHER STRUCTED AS A FIRST STEP IN NCTIONAL BEFORE UPSLOPE

N STRUCTURES SUCH AS ALLATION.

NED AND CONSTRUCTED BY THE TRAP OR BASIN.

AP SHALL BE 134 CUBIC YARDS NLY CONTROL DRAINAGE

OMPRISED OF FLOW FROM E ACRES SHALL BE ORAGE CAPACITY OF A

E OF DRAINAGE AREA. THE STRUCTURAL INTEGRITY OF ATION. RUNOFF COEFFICIENTS TO A BARE EARTH CONDITION E SEDIMENT BASIN IS UTILIZED.

JCTED IN A MANNER THAT WILL DING EXCESSIVELY WITHIN /IDED WITH ADDITIONAL SLOPE

R FILL SLOPES UNLESS ANENT CHANNEL, FLUME OR

TE DRAINAGE OR OTHER

JRING CONSTRUCTION SHALL OT ENTER THE CONVEYANCE TREATED TO REMOVE

NCE CHANNELS OR PIPES ARE ND ANY REQUIRED TEMPORARY BOTH THE CONVEYANCE

RECAUTIONS SHALL BE TAKEN SPORT AND STABILIZE THE G CONSTRUCTION. RUCTION OF CAUSEWAYS

SE STRUCTURES IF ARMORED

STRUCTION VEHICLES MORE EHICULAR STREAM CROSSING OVIDED.

ENTS PERTAINING TO WORKING

BILIZED IMMEDIATELY AFTER

CORDANCE WITH THE BLE CRITERIA:

OPENED AT ONE TIME.

ILL SIDE OF TRENCHES. FILTERED OR PASSED , OR BOTH, AND DISCHARGED WING STREAMS OR OFF-SITE

E PROPERLY COMPACTED IN ATION.

DANCE WITH THIS CHAPTER. IED WITH.

SECT PAVED OR PUBLIC ANSPORT OF SEDIMENT BY RE SEDIMENT IS TRANSPORTED RFACE SHALL BE CLEANED L BE REMOVED FROM THE TO A SEDIMENT CONTROL NLY AFTER SEDIMENT IS ' TO INDIVIDUAL RBING ACTIVITIES.

SURES SHALL BE REMOVED ER THE TEMPORARY E AUTHORIZED BY THE VESCP IL AREAS RESULTING FROM ERMANENTLY STABILIZED TO

ELOPMENT SITES SHALL BE DAMAGE DUE TO INCREASES ATER RUNOFF FOR THE CCORDANCE WITH THE RATION AND RELOCATION ON CONCEPTS ARE NOT FLOW RATE CAPACITY AND CHANNELS:

CONCENTRATED STORMWATER RUNOFF LEAVING A DEVELOPMENT SITE SHALL BE DISCHARGED DIRECTLY INTO AN ADEQUATE NATURAL OR MAN-MADE RECEIVING CHANNEL, PIPE OR STORM SEWER SYSTEM. FOR THOSE SITES WHERE RUNOFF IS DISCHARGED INTO A PIPE OR PIPE SYSTEM, DOWNSTREAM STABILITY ANALYSES AT THE OUTFALL OF THE PIPE OR PIPE SYSTEM SHALL BE PERFORMED.

ADEQUACY OF ALL CHANNELS AND PIPES SHALL BE VERIFIED IN THE FOLLOWING MANNER

(1) THE APPLICANT SHALL DEMONSTRATE THAT THE TOTAL DRAINAGE AREA TO THE POINT OF ANALYSIS WITHIN THE CHANNEL IS ONE HUNDRED TIMES GREATER THAN THE CONTRIBUTING DRAINAGE AREA OF THE PROJECT IN QUESTION; OR

(2) (A) NATURAL CHANNELS SHALL BE ANALYZED BY THE USE OF A TWO-YEAR STORM TO VERIFY THAT STORMWATER WILL NOT OVERTOP CHANNEL BANKS NOR CAUSE EROSION OF CHANNEL BED OR BANKS.

- (b) ALL PREVIOUSLY CONSTRUCTED MAN-MADE CHANNELS SHALL BE ANALYZED BY THE USE OF A TEN-YEAR STORM TO VERIFY THAT STORMWATER WILL NOT OVERTOP ITS BANKS AND BY THE USE OF A TWO-YEAR STORM TO DEMONSTRATE THAT STORMWATER WILL NOT CAUSE EROSION OF CHANNEL BED OR BANKS: AND
- (c) PIPES AND STORM SEWER SYSTEMS SHALL BE ANALYZED BY THE USE OF A TEN-YEAR STORM TO VERIFY THAT STORMWATER WILL BE CONTAINED WITHIN THE PIPE OR SYSTEM.

c. IF EXISTING NATURAL RECEIVING CHANNELS OR PREVIOUSLY CONSTRUCTED MAN-MADE CHANNELS OR PIPES ARE NOT ADEQUATE, THE APPLICANT SHALL:

(1) IMPROVE THE CHANNELS TO A CONDITION WHERE A TEN-YEAR STORM WILL NOT OVERTOP THE BANKS AND A TWO-YEAR STORM WILL NOT CAUSE EROSION TO THE CHANNEL, THE BED, OR THE BANKS; OR

(2) IMPROVE THE PIPE OR PIPE SYSTEM TO A CONDITION WHERE THE TEN-YEAR STORM IS CONTAINED WITHIN THE APPURTENANCES;

- (3) DEVELOP A SITE DESIGN THAT WILL NOT CAUSE THE PRE-DEVELOPMENT PEAK RUNOFF RATE FROM A TWO-YEAR STORM TO INCREASE WHEN RUNOFF OUTFALLS INTO A NATURAL CHANNEL OR WILL NOT CAUSE THE PRE-DEVELOPMENT PEAK RUNOFF RATE FROM A TEN-YEAR STORM TO INCREASE WHEN RUNOFF OUTFALLS INTO A MAN-MADE CHANNEL; OR
- (4) PROVIDE A COMBINATION OF CHANNEL IMPROVEMENT, STORMWATER DETENTION OR OTHER MEASURES WHICH IS SATISFACTORY TO THE VESCP AUTHORITY TO PREVENT DOWNSTREAM EROSION.
- THE APPLICANT SHALL PROVIDE EVIDENCE OF PERMISSION TO MAKE THE d. IMPROVEMENTS.
- ALL HYDROLOGIC ANALYSES SHALL BE BASED ON THE EXISTING WATERSHED e. CHARACTERISTICS AND THE ULTIMATE DEVELOPMENT CONDITION OF THE SUBJECT PROJECT
- IF THE APPLICANT CHOOSES AN OPTION THAT INCLUDES STORMWATER DETENTION, HE SHALL OBTAIN APPROVAL FROM THE VESCP OF A PLAN FOR MAINTENANCE OF THE DETENTION FACILITIES. THE PLAN SHALL SET FORTH THE MAINTENANCE REQUIREMENTS OF THE FACILITY AND THE PERSON RESPONSIBLE FOR PERFORMING THE MAINTENANCE.
- OUTFALL FROM A DETENTION FACILITY SHALL BE DISCHARGED TO A RECEIVING CHANNEL, AND ENERGY DISSIPATORS SHALL BE PLACED AT THE OUTFALL OF ALL DETENTION FACILITIES AS NECESSARY TO PROVIDE A STABILIZED TRANSITION FROM THE FACILITY TO THE RECEIVING CHANNEL.
- h. ALL ON-SITE CHANNELS MUST BE VERIFIED TO BE ADEQUATE.
- INCREASED VOLUMES OF SHEET FLOWS THAT MAY CAUSE EROSION OR SEDIMENTATION ON ADJACENT PROPERTY SHALL BE DIVERTED TO A STABLE OUTLET, ADEQUATE CHANNEL, PIPE OR PIPE SYSTEM, OR TO A DETENTION FACILITY.
- IN APPLYING THESE STORMWATER MANAGEMENT CRITERIA, INDIVIDUAL LOTS OR PARCELS IN A RESIDENTIAL, COMMERCIAL OR INDUSTRIAL DEVELOPMENT SHALL NOT BE CONSIDERED TO BE SEPARATE DEVELOPMENT PROJECTS. INSTEAD, THE DEVELOPMENT, AS A WHOLE, SHALL BE CONSIDERED TO BE A SINGLE DEVELOPMENT PROJECT. HYDROLOGIC PARAMETERS THAT REFLECT THE ULTIMATE DEVELOPMENT CONDITION SHALL BE USED IN ALL ENGINEERING CALCULATIONS.
- k. ALL MEASURES USED TO PROTECT PROPERTIES AND WATERWAYS SHALL BE EMPLOYED IN A MANNER WHICH MINIMIZES IMPACTS ON THE PHYSICAL, CHEMICAL AND BIOLOGICAL INTEGRITY OF RIVERS, STREAMS AND OTHER WATERS OF THE STATE.
 - ANY PLAN APPROVED PRIOR TO JULY 1, 2014, THAT PROVIDES FOR STORMWATER MANAGEMENT THAT ADDRESSES ANY FLOW RATE CAPACITY AND VELOCITY REQUIREMENTS FOR NATURAL OR MAN-MADE CHANNELS SHALL SATISFY THE FLOW RATE CAPACITY AND VELOCITY REQUIREMENTS FOR NATURAL OR MAN-MADE CHANNELS IF THE PRACTICES ARE DESIGNED TO (I) DETAIN THE WATER QUALITY VOLUME AND TO RELEASE IT OVER 48 HOURS; (II) DETAIN AND RELEASE OVER A 24-HOUR PERIOD THE EXPECTED RAINFALL RESULTING FROM THE ONE YEAR, 24-HOUR STORM; AND (III) REDUCE THE ALLOWABLE PEAK FLOW RATE RESULTING FROM THE 1.5, 2, AND 10-YEAR, 24-HOUR STORMS TO A LEVEL THAT IS LESS THAN OR EQUAL TO THE PEAK FLOW RATE FROM THE SITE ASSUMING IT WAS IN A GOOD FORESTED CONDITION, ACHIEVED THROUGH MULTIPLICATION OF THE FORESTED PEAK FLOW RATE BY A REDUCTION FACTOR THAT IS EQUAL TO THE RUNOFF VOLUME FROM THE SITE WHEN IT WAS IN A GOOD FORESTED CONDITION DIVIDED BY THE RUNOFF VOLUME FROM THE SITE IN ITS PROPOSED CONDITION, AND SHALL BE EXEMPT FROM ANY FLOW RATE CAPACITY AND VELOCITY REQUIREMENTS FOR NATURAL OR MAN-MADE CHANNELS AS DEFINED IN ANY REGULATIONS PROMULGATED PURSUANT TO § 62.1-44.15:54 OR 62.1-44.15:65 OF THE ACT.
- FOR PLANS APPROVED ON AND AFTER JULY 1, 2014, THE FLOW RATE CAPACITY AND m. VELOCITY REQUIREMENTS OF § 62.1-44.15:52 A OF THE ACT AND THIS SUBSECTION SHALL BE SATISFIED BY COMPLIANCE WITH WATER QUANTITY REQUIREMENTS IN THE STORMWATER MANAGEMENT ACT (§ 62.1-44.15:24 ET SEQ. OF THE CODE OF VIRGINIA) AND ATTENDANT REGULATIONS, UNLESS SUCH LAND-DISTURBING ACTIVITIES ARE IN ACCORDANCE WITH 9VAC25-870-48 OF THE VIRGINIA STORMWATER MANAGEMENT PROGRAM (VSMP) REGULATIONS.
- n. COMPLIANCE WITH THE WATER QUANTITY MINIMUM STANDARDS SET OUT IN 9VAC25-870-66 OF THE VIRGINIA STORMWATER MANAGEMENT PROGRAM (VSMP) REGULATIONS SHALL BE DEEMED TO SATISFY THE REQUIREMENTS OF SUBDIVISION 19 OF THIS SUBSECTION.

STATUTORY AUTHORITY

§ 62.1-44.15:52 OF THE CODE OF VIRGINIA.

HISTORICAL NOTES

FORMER 4VAC50-30-40, DERIVED FROM VR625-02-00 § 4; EFF SEPTEMBER 13, 1990; AMENDED, VIRGINIA REGISTER VOLUME 11, ISSUE 11, EFF. MARCH 22, 1995; VOLUME 29, ISSUE 4, EFF. NOVEMBER 21, 2012; AMENDED AND RENUMBERED, VIRGINIA REGISTER VOLUME 30, ISSUE 2, EFF. OCTOBER 23, 2013.

	DATE:	APRIL 2022
	HAZEN NO.:	32571-003
GENERAL	HAZEN CONTRA	ст NO.: 202827
EROSION AND SEDIMENT CONTROL NOTES	DRAWING NUMBER:	

2571-003

				PROJECT ENGINEER [.]	C. TABOR		
				DESIGNED BY:	T. SMITH		- Mon
				DRAWN BY:	S. KANE	100% DESIGN - ISSUED	COL
				CHECKED BY:	T. SCHUELER	FOR CONSTRUCTION	PRO Li
				IF THIS BAR DOES NOT	0 4/01 41		
				MEASURE 1" THEN DRAWING IS	0 1/2" 1"		
REV	ISSUED FOR	DATE	BY	NOT TO FULL SCALE			

CHARLOTTESVILLE, VIRGINIA

SCHENKS BRANCH TRIBUTARY STREAM **RESTORATION PROJECT**

\rightarrow				
ſ				
\geq				
×				
/				
$\langle \rangle$				
X				
1				
3				
17				
	- SCHENKS BRANCH			
J X4				
	• ELOW			
$\sum $	The second			
	JOHN W. WARNER			
	PARKWAY			
ſ				
/				
/ /				
/				
/ /				
/ /				
7				
			50 25 0	50'
		1" = 50'		
				APRII 2022
			HAZEN NO.:	32571-003
			HAZEN CONTRA	CT NO.: 202827
	SCHENKS BRANCH TRIBUTARY SITE KEY MAP		DRAWING	_
			NUMBER:	
				C1

NOTES:

1. TREE IMPACT TABLES LOCATED ON DWG C5.

CIVIL
EXISTING CONDITIONS SURVEY AND
DEMOLITION PLANS - 1 OF 3

32571-003 HAZEN NO.: HAZEN CONTRACT NO.: 202827

DRAWING NUMBER:

DATE:

APRIL 2022

			PROJECT ENGINEER:	C. TABOR		A MARKAN
			DESIGNED BY:	T. SMITH		2017Mz
			DRAWN BY:	S. KANE	100% DESIGN - ISSUED	T S
			CHECKED BY:	T. SCHUELER	FOR CONSTRUCTION	PR Lic.
			IF THIS BAR DOES NOT	0 1/2" 1"		A CONTRACTOR
ISSUED FOR	DATE	BY	NOT TO FULL SCALE			

SCHENKS BRANCH TRIBUTARY STREAM **RESTORATION PROJECT**

NOTES:

1. TREE IMPACT TABLES LOCATED ON DWG C5.

APRIL 2022 DATE: 32571-003 HAZEN NO.:

HAZEN CONTRACT NO.: 202827

DRAWING NUMBER:

TREE ID DBH SPECIES HEALTH NORTHING EASTING REASON FOR REMOVAL REUSE ACTION 110 15 RED MAPLE GOOD 3905284/0750' 11490762.1400' STREAM GRADING TOE WOOD 111 8 TULIP POPLAR GOOD 3905277.750' 11490753.0100' STREAM GRADING TOE WOOD 112 18 CHESTNUT GOOD 3905277.750' 11490746.8500' STREAM GRADING TOE WOOD 114 12 CHESTNUT GOOD 3905245.5040' 11490746.8500' STREAM GRADING TOE WOOD 114 12 CHESTNUT GOOD 3905301.0570' 11490742.8400' STREAM GRADING TOE WOOD 116 10 CHESTNUT GOOD 390531.0570' 11490732.7200' STREAM GRADING TOE WOOD 118 18 DOUBLE TULIP GOOD 3905375.050'' 11490642.800'' STREAM GRADING TOE WOOD 120 15 TREE DEAD 3905375.050'' 11490682.200''STREAM GRADING TOE WOOD <th colspan="9">SCHENKS BRANCH TRIBTUARY TREE REMOVAL TABLE</th>	SCHENKS BRANCH TRIBTUARY TREE REMOVAL TABLE								
110 15 RED MAPLE GOOD 3905284.0750' 11490762.1400' STREAM GRADING TOE WOOD 111 8 TULIP POPLAR GOOD 3905291.2450' 11490760.0600' STREAM GRADING TOE WOOD 112 18 CHESTNUT GOOD 3905291.2450' 11490746.8500' STREAM GRADING TOE WOOD 113 12 CHESTNUT GOOD 3905294.5040' 11490746.8500' STREAM GRADING TOE WOOD 114 12 CHESTNUT GOOD 3905301.0570' 11490746.8500' STREAM GRADING TOE WOOD 115 10 CHESTNUT GOOD 3905331.3260' 11490744.7600' STREAM GRADING TOE WOOD 116 10 CHESTNUT GOOD 3905330.7420' 11490744.7600' STREAM GRADING TOE WOOD 118 BLOUBLE TULIP GOOD 3905330.7420' 11490704.4800' STREAM GRADING TOE WOOD 120 15 TREE DEAD 3905375.0660' 11490681.2900' STREAM GRADING TOE WOOD <th>TREE ID</th> <th>DBH</th> <th>SPECIES</th> <th>HEALTH</th> <th>NORTHING</th> <th>EASTING</th> <th>REASON FOR REMOVAL</th> <th>REUSE ACTION</th>	TREE ID	DBH	SPECIES	HEALTH	NORTHING	EASTING	REASON FOR REMOVAL	REUSE ACTION	
111 8 TULIP POPLAR GOOD 3905291.2450' 11490780.0600' STREAM GRADING TOE WOOD 112 18 CHESTNUT GOOD 3905278.7760' 11490763.0100' STREAM GRADING TOE WOOD 113 12 CHESTNUT GOOD 3905293.7290' 11490746.6500' STREAM GRADING TOE WOOD 114 12 CHESTNUT GOOD 3905293.5040' 11490742.6400' STREAM GRADING TOE WOOD 115 10 CHESTNUT GOOD 390531.0570' 11490742.6400' STREAM GRADING TOE WOOD 117 15 BLACK POPLAR GOOD 3905330.7420' 1149074.7600' STREAM GRADING TOE WOOD 118 18 DOUBLE TULP GOOD 3905375.080' 11490724.4600' STREAM GRADING TOE WOOD 120 15 TREE DEAD 3905375.080' 11490724.4600' STREAM GRADING TOE WOOD 121 36 DOUBLE TULP GOOD 3905375.080'' 11490632.4600'' STREAM GRADING T	110	15	RED MAPLE	GOOD	3905284.0750'	11490762.1400'	STREAM GRADING	TOE WOOD	
112 18 CHESTNUT GOOD 3905278.7760' 11490753.0100' STREAM GRADING TOE WOOD 113 12 CHESTNUT GOOD 3905283.7290' 11490748.6500' STREAM GRADING TOE WOOD 114 12 CHESTNUT GOOD 3905245.040' 11490746.6500' STREAM GRADING TOE WOOD 115 10 CHESTNUT GOOD 390531.0570' 11490742.6400' STREAM GRADING TOE WOOD 116 10 CHESTNUT GOOD 3905330.7420' 11490744.7600' STREAM GRADING TOE WOOD 117 15 BLACK POPLAR GOOD 3905345.5330' 11490724.4500' STREAM GRADING TOE WOOD 119 15 BOXELDER GOOD 3905375.0680' 11490691.290' STREAM GRADING TOE WOOD 121 36 DOUBLE TULIP GOOD 3905375.0680' 11490682.020' STREAM GRADING TOE WOOD 122 18 TULIP POPLAR GOOD 3905475.0680' 11490635.770' STREAM GRADING	111	8	TULIP POPLAR	GOOD	3905291.2450'	11490780.0600'	STREAM GRADING	TOE WOOD	
113 12 CHESTNUT GOOD 3905283.7280 11490746.8500 STREAM GRADING TOE WOOD 114 12 CHESTNUT GOOD 3905294.5040 11490746.8800 STREAM GRADING TOE WOOD 115 10 CHESTNUT GOOD 3905301.0570 11490742.4000 STREAM GRADING TOE WOOD 116 10 CHESTNUT GOOD 3905301.0570 11490742.4000 STREAM GRADING TOE WOOD 117 15 BLACK POPLAR GOOD 3905301.7201 11490732.7200 STREAM GRADING TOE WOOD 118 DOUBLE TULIP GOOD 3905365.8300 11490704.4800 STREAM GRADING TOE WOOD 120 15 TREE DEAD 3905375.0690 11490682.0200 STREAM GRADING TOE WOOD 121 36 DOUBLE TULIP GOOD 3905375.0690 11490682.0200 STREAM GRADING TOE WOOD 122 18 TULIP POPLAR GOOD 3905406.7360 11490632.4000 STREAM GRADING TOE WOOD	112	18	CHESTNUT	GOOD	3905278.7760'	11490753.0100'	STREAM GRADING	TOE WOOD	
114 12 CHESTNUT GOOD 3905294.5040* 11490746.6800* STREAM GRADING TOE WOOD 115 10 CHESTNUT GOOD 3905301.0570* 11490742.6400* STREAM GRADING TOE WOOD 116 10 CHESTNUT GOOD 3905301.0570* 11490742.6400* STREAM GRADING TOE WOOD 117 15 BLACK POPLAR GOOD 3905303.7420* 11490744.600* STREAM GRADING TOE WOOD 118 DOUBLE TULIP GOOD 3905385.3520* 11490704.4800* STREAM GRADING TOE WOOD 120 15 TREE DEAD 3905375.0690* 11490682.020* STREAM GRADING TOE WOOD 121 36 DOUBLE TULIP GOOD 3905375.0690* 11490682.020* STREAM GRADING TOE WOOD 122 18 TULIP POPLAR GOOD 3905408.205* 11490632.460* STREAM GRADING TOE WOOD 123 10 BLACK WALNUT LEANING 3905408.205* 11490632.460* STREAM GRADING TOE WOOD	113	12	CHESTNUT	GOOD	3905283.7290'	11490746.8500'	STREAM GRADING	TOE WOOD	
115 10 CHESTNUT GOOD 3905301.0570 11490742.6400' STREAM GRADING TOE WOOD 116 10 CHESTNUT GOOD 3905311.3660' 11490744.7600' STREAM GRADING TOE WOOD 117 15 BLACK POPLAR GOOD 3905330.7420' 11490732.7200' STREAM GRADING TOE WOOD 118 18 DOUBLE TULIP GOOD 3905358.9520' 11490691.2900' STREAM GRADING TOE WOOD 120 15 TREE DEAD 3905375.0690' 11490691.2900' STREAM GRADING TOE WOOD 121 36 DOUBLE TULIP GOOD 3905375.0690' 11490622.020' STREAM GRADING J-HOOK LOS VA 122 18 TULIP POPLAR GOOD 3905408.2050' 11490632.4600' STREAM GRADING TOE WOOD 123 10 BLACK WALNUT LEANING 3905408.2050' 11490632.4600' STREAM GRADING TOE WOOD 124 15 MOCKERNUT HICKORY GOOD 3905408.710' STREAM GRADING TOE WOOD<	114	12	CHESTNUT	GOOD	3905294.5040'	11490746.6800'	STREAM GRADING	TOE WOOD	
116 10 CHESTNUT GOOD 3905311.3660' 11490744.7600' STREAM GRADING TOE WOOD 117 15 BLACK POPLAR GOOD 3905330.7420' 11490732.7200' STREAM GRADING TOE WOOD 118 18 DOUBLE TULIP GOOD 3905336.5330' 11490704.4800' STREAM GRADING TOE WOOD 119 15 BOXELDER GOOD 3905371.3230' 11490702.4600' STREAM GRADING TOE WOOD 120 15 TREE DEAD 3905375.0690' 11490682.0200' STREAM GRADING TOE WOOD 121 36 DOUBLE TULIP GOOD 3905375.0690' 11490685.7700' STREAM GRADING TOE WOOD 122 18 TULIP POPLAR GOOD 3905408.7360' 11490652.0300' STREAM GRADING TOE WOOD 124 15 MOCKERNUT HICKORY GOOD 3905408.7360' STREAM GRADING TOE WOOD 125 8 MOCKERNUT HICKORY GOOD 3905408.7360' STREAM GRADING TOE WOOD <	115	10	CHESTNUT	GOOD	3905301.0570'	11490742.6400'	STREAM GRADING	TOE WOOD	
117 15 BLACK POPLAR GOOD 3905330.7420' 11490732.7200' STREAM GRADING TOE WOOD 118 18 DOUBLE TULIP GOOD 3905345.5330' 11490704.4800' STREAM GRADING TOE WOOD 119 15 BOXELDER GOOD 3905358.9520' 11490691.2900' STREAM GRADING TOE WOOD 120 15 TREE DEAD 3905371.3230' 11490702.4600' STREAM GRADING JHOCKLOG VAI 121 36 DOUBLE TULIP GOOD 3905387.9120' 11490682.0200' STREAM GRADING TOE WOOD 122 18 TULIP POPLAR GOOD 3905408.730' STREAM GRADING TOE WOOD 124 15 MOCKERNUT HICKORY GOOD 3905408.730' 11490632.4600' STREAM GRADING TOE WOOD 125 8 MOCKERNUT HICKORY GOOD 3905428.5190' 11490633.700' STREAM GRADING JHOK LOG VAI 127 12 RED MAPLE GOOD 3905433.3550' 11490636.4800' STREAM GRADING JHOK	116	10	CHESTNUT	GOOD	3905311.3660'	11490744.7600'	STREAM GRADING	TOE WOOD	
118 18 DOUBLE TULIP GOOD 3905345.5330' 11490704.4800' STREAM GRADING TOE WOOD 119 15 BOXELDER GOOD 3905358.9520' 11490691.2900' STREAM GRADING TOE WOOD 120 15 TREE DEAD 3905371.3230' 11490702.4600' STREAM GRADING TOE WOOD 121 36 DOUBLE TULIP GOOD 3905375.0690' 11490682.0200' STREAM GRADING J-HOOK LOG VAI 122 18 TULIP POPLAR GOOD 3905408.2050' 11490682.0300' STREAM GRADING TOE WOOD 123 10 BLACK WALNUT LEANING 3905408.2050' 11490632.4600' STREAM GRADING TOE WOOD 124 15 MOCKERNUT HICKORY GOOD 3905428.5190' 11490630.770' STREAM GRADING TOE WOOD 126 24 MOCKERNUT HICKORY GOOD 3905422.3480' 11490633.970' STREAM GRADING J-HOOK LOG VAI 127 12 RED MAPLE GOOD 3905421.6110' 11490639.970'	117	15	BLACK POPLAR	GOOD	3905330.7420'	11490732.7200'	STREAM GRADING	TOE WOOD	
119 15 BOXELDER GOOD 3905358.9520' 11490691.2900' STREAM GRADING TOE WOOD 120 15 TREE DEAD 3905371.3230' 11490702.4600' STREAM GRADING TOE WOOD 121 36 DOUBLE TULIP GOOD 3905375.0690' 11490682.0200' STREAM GRADING J-HOOK LOG VA 122 18 TULIP POPLAR GOOD 3905387.9120' 11490655.7700' STREAM GRADING TOE WOOD 123 10 BLACK WALNUT LEANING 3905408.2050' 11490632.4600' STREAM GRADING TOE WOOD 124 15 MOCKERNUT HICKORY GOOD 3905409.7470' 11490632.4600' STREAM GRADING TOE WOOD 126 8 MOCKERNUT HICKORY GOOD 3905428.5190' 11490634.800' STREAM GRADING J-HOOK LOG VA 127 12 RED MAPLE GOOD 390543.3550' 11490636.4800' STREAM GRADING J-HOOK LOG VA 129 15 MOCKERNUT HICKORY GOOD 3905433.350' 11490636.500'	118	18	DOUBLE TULIP	GOOD	3905345.5330'	11490704.4800'	STREAM GRADING	TOE WOOD	
120 15 TREE DEAD 3905371.3230' 11490702.4600' STREAM GRADING TOE WOOD 121 36 DOUBLE TULIP GOOD 3905375.0690' 11490682.0200' STREAM GRADING J-HOOK LOG VA 122 18 TULIP POPLAR GOOD 3905387.9120' 11490655.7700' STREAM GRADING TOE WOOD 123 10 BLACK WALNUT LEANING 3905408.2050' 11490625.0300' STREAM GRADING TOE WOOD 124 15 MOCKERNUT HICKORY GOOD 3905408.2050' 11490632.4600' STREAM GRADING TOE WOOD 125 8 MOCKERNUT HICKORY GOOD 3905408.760' 11490630.7700' STREAM GRADING TOE WOOD 126 24 MOCKERNUT HICKORY GOOD 390542.3480' 11490639.9700' STREAM GRADING J-HOOK LOG VA 127 12 RED MAPLE GOOD 390542.3480' 11490639.9700' STREAM GRADING J-HOOK LOG VA 128 21 RED MAPLE GOOD 390542.0400' STREAM GRADING	119	15	BOXELDER	GOOD	3905358.9520'	11490691.2900'	STREAM GRADING	TOE WOOD	
121 36 DOUBLE TULIP GOOD 3905375.0690' 11490682.0200' STREAM GRADING J-HOCK LOG VA 122 18 TULIP POPLAR GOOD 3905387.9120' 11490655.7700' STREAM GRADING TOE WOOD 123 10 BLACK WALNUT LEANING 3905408.2050' 11490625.0300' STREAM GRADING TOE WOOD 124 15 MOCKERNUT HICKORY GOOD 3905406.7360' 11490632.4600' STREAM GRADING TOE WOOD 125 8 MOCKERNUT HICKORY GOOD 3905409.7470' 11490630.7700' STREAM GRADING TOE WOOD 126 24 MOCKERNUT HICKORY GOOD 3905422.3480' 11490639.9700' STREAM GRADING J-HOOK LOG VA 127 12 RED MAPLE GOOD 3905433.3550' 11490615.6500' STREAM GRADING J-HOOK LOG VA 128 21 RED MAPLE GOOD 3905455.9570' 11490615.6500' STREAM GRADING J-HOOK LOG VA 130 24 QUADRUPLE RED GOOD 3905455.9570' 114	120	15	TREE	DEAD	3905371.3230'	11490702.4600'	STREAM GRADING	TOE WOOD	
122 18 TULIP POPLAR GOOD 3905387.9120' 11490655.7700' STREAM GRADING TOE WOOD 123 10 BLACK WALNUT LEANING 3905408.2050' 11490625.0300' STREAM GRADING TOE WOOD 124 15 MOCKERNUT HICKORY GOOD 3905408.2050' 11490632.4600' STREAM GRADING TOE WOOD 125 8 MOCKERNUT HICKORY GOOD 3905408.2050' 11490636.4800' STREAM GRADING TOE WOOD 126 24 MOCKERNUT HICKORY GOOD 3905428.5190' 11490636.4800' STREAM GRADING J-HOOK LOG VAL 127 12 RED MAPLE GOOD 3905421.6110' 11490639.9700' STREAM GRADING J-HOOK LOG VAL 129 15 MOCKERNUT HICKORY GOOD 3905421.6110' 11490699.3400' STREAM GRADING J-HOOK LOG VAL 130 24 QUADRUPLE RED GOOD 3905458.970' 11490587.7300' STREAM GRADING J-HOOK LOG VAL 131 10 BLACK CHERRY GOOD 3905491.7530'	121	36	DOUBLE TULIP	GOOD	3905375.0690'	11490682.0200'	STREAM GRADING	J-HOOK LOG VANE	
123 10 BLACK WALNUT LEANING 3905408.2050' 11490625.0300' STREAM GRADING TOE WOOD 124 15 MOCKERNUT HICKORY GOOD 3905406.7360' 11490632.4600' STREAM GRADING TOE WOOD 125 8 MOCKERNUT HICKORY GOOD 3905409.7470' 11490630.7700' STREAM GRADING TOE WOOD 126 24 MOCKERNUT HICKORY GOOD 3905422.3480' 11490636.4800' STREAM GRADING J-HOCK LOG VAI 127 12 RED MAPLE GOOD 3905422.3480' 11490615.6500' STREAM GRADING J-HOCK LOG VAI 128 21 RED MAPLE GOOD 3905421.6110' 11490615.6500' STREAM GRADING J-HOCK LOG VAI 129 15 MOCKERNUT HICKORY GOOD 3905455.9570' 11490609.9400' STREAM GRADING J-HOCK LOG VAI 130 24 QUADRUPLE RED GOOD 3905455.9570' 11490587.7300' STREAM GRADING J-HOCK LOG VAI 131 10 BLACK CHERRY GOOD 3905495.5780'	122	18	TULIP POPLAR	GOOD	3905387.9120'	11490655.7700'	STREAM GRADING	TOE WOOD	
124 15 MOCKERNUT HICKORY GOOD 3905406.7360' 11490632.4600' STREAM GRADING TOE WOOD 125 8 MOCKERNUT HICKORY GOOD 3905409.7470' 11490630.7700' STREAM GRADING TOE WOOD 126 24 MOCKERNUT HICKORY GOOD 3905428.5190' 11490636.4800' STREAM GRADING J-HOOK LOG VA 127 12 RED MAPLE GOOD 3905423.3480' 11490639.9700' STREAM GRADING J-HOOK LOG VA 128 21 RED MAPLE GOOD 3905421.6110' 11490615.6500' STREAM GRADING J-HOOK LOG VA 129 15 MOCKERNUT HICKORY GOOD 3905455.9570' 11490609.9400' STREAM GRADING J-HOOK LOG VA 130 24 QUADRUPLE RED GOOD 3905455.9570' 11490638.2800' STREAM GRADING J-HOOK LOG VA 131 10 BLACK CHERRY GOOD 3905491.7530' 11490682.2800' CONSTRUCTION ACCESS TOE WOOD 133 15 TREE DEAD 3905491.7530' <td< td=""><td>123</td><td>10</td><td>BLACK WALNUT</td><td>LEANING</td><td>3905408.2050'</td><td>11490625.0300'</td><td>STREAM GRADING</td><td>TOE WOOD</td></td<>	123	10	BLACK WALNUT	LEANING	3905408.2050'	11490625.0300'	STREAM GRADING	TOE WOOD	
125 8 MOCKERNUT HICKORY GOOD 3905409.7470' 11490630.7700' STREAM GRADING TOE WOOD 126 24 MOCKERNUT HICKORY GOOD 3905428.5190' 11490636.4800' STREAM GRADING J-HOOK LOG VA 127 12 RED MAPLE GOOD 3905422.3480' 11490639.9700' STREAM GRADING TOE WOOD 128 21 RED MAPLE GOOD 3905422.3480' 11490615.6500' STREAM GRADING J-HOOK LOG VA 129 15 MOCKERNUT HICKORY GOOD 3905421.6110' 11490609.9400' STREAM GRADING J-HOOK LOG VA 130 24 QUADRUPLE RED GOOD 3905455.9570' 11490599.3400' STREAM GRADING J-HOOK LOG VA 131 10 BLACK CHERRY GOOD 3905458.4780' 11490587.7300' STREAM GRADING J-HOOK LOG VA 133 15 TREE DEAD 3905501.2120' 11490684.9600' STREAM GRADING J-HOOK LOG VA 134 30 TULIP POPLAR GOOD 3905536.2520' 1149	124	15	MOCKERNUT HICKORY	GOOD	3905406.7360'	11490632.4600'	STREAM GRADING	TOE WOOD	
126 24 MOCKERNUT HICKORY GOOD 3905428.5190' 11490636.4800' STREAM GRADING J-HOOK LOG VA 127 12 RED MAPLE GOOD 3905422.3480' 11490639.9700' STREAM GRADING TOE WOOD 128 21 RED MAPLE GOOD 3905433.3550' 11490615.6500' STREAM GRADING J-HOOK LOG VA 129 15 MOCKERNUT HICKORY GOOD 3905421.6110' 11490600.9400' STREAM GRADING TOE WOOD 130 24 QUADRUPLE RED GOOD 3905455.9570' 11490587.7300' STREAM GRADING J-HOOK LOG VA 131 10 BLACK CHERRY GOOD 3905491.7530' 11490682.800' CONSTRUCTION ACCESS TOE WOOD 133 15 TREE DEAD 3905491.7530' 11490684.9600' STREAM GRADING J-HOOK LOG VA 134 30 TULIP POPLAR GOOD 3905495.5780' 114906364.9600' STREAM GRADING J-HOOK LOG VA 135 10 BLACK CHERRY GOOD 3905536.2520' 11490636	125	8	MOCKERNUT HICKORY	GOOD	3905409.7470'	11490630.7700'	STREAM GRADING	TOE WOOD	
127 12 RED MAPLE GOOD 3905422.3480' 11490639.9700' STREAM GRADING TOE WOOD 128 21 RED MAPLE GOOD 3905433.3550' 11490615.6500' STREAM GRADING J-HOOK LOG VA 129 15 MOCKERNUT HICKORY GOOD 3905421.6110' 11490600.9400' STREAM GRADING TOE WOOD 130 24 QUADRUPLE RED GOOD 3905455.9570' 11490599.3400' STREAM GRADING J-HOOK LOG VA 131 10 BLACK CHERRY GOOD 3905458.4780' 11490587.7300' STREAM GRADING TOE WOOD 133 15 TREE DEAD 3905491.7530' 11490688.2800' CONSTRUCTION ACCESS TOE WOOD 134 30 TULIP POPLAR GOOD 3905495.5780' 11490686.2800' STREAM GRADING J-HOOK LOG VA 135 10 BLACK CHERRY GOOD 3905495.5780' 11490684.8000' STREAM GRADING TOE WOOD 136 18 RED MAPLE GOOD 3905536.2520' 11490634.8900'	126	24	MOCKERNUT HICKORY	GOOD	3905428.5190'	11490636.4800'	STREAM GRADING	J-HOOK LOG VANE	
128 21 RED MAPLE GOOD 3905433.3550' 11490615.6500' STREAM GRADING J-HOOK LOG VA 129 15 MOCKERNUT HICKORY GOOD 3905421.6110' 11490600.9400' STREAM GRADING TOE WOOD 130 24 QUADRUPLE RED GOOD 3905455.9570' 11490599.3400' STREAM GRADING J-HOOK LOG VA 131 10 BLACK CHERRY GOOD 3905491.7530' 11490688.2800' CONSTRUCTION ACCESS TOE WOOD 133 15 TREE DEAD 3905491.7530' 11490668.2800' CONSTRUCTION ACCESS TOE WOOD 134 30 TULIP POPLAR GOOD 3905501.2120' 11490664.9600' STREAM GRADING J-HOOK LOG VA 135 10 BLACK CHERRY GOOD 3905536.2520' 11490631.0000' STREAM GRADING TOE WOOD 136 18 RED MAPLE GOOD 3905542.0400' 11490634.8900' STREAM GRADING TOE WOOD 137 8 BLACK WALNUT GOOD 3905578.8840' 11490634.8900'	127	12	RED MAPLE	GOOD	3905422.3480'	11490639.9700'	STREAM GRADING	TOE WOOD	
129 15 MOCKERNUT HICKORY GOOD 3905421.6110' 11490600.9400' STREAM GRADING TOE WOOD 130 24 QUADRUPLE RED GOOD 3905455.9570' 11490599.3400' STREAM GRADING J-HOOK LOG VA 131 10 BLACK CHERRY GOOD 3905458.4780' 11490587.7300' STREAM GRADING TOE WOOD 133 15 TREE DEAD 3905491.7530' 11490608.2800' CONSTRUCTION ACCESS TOE WOOD 134 30 TULIP POPLAR GOOD 3905495.5780' 11490664.9600' STREAM GRADING J-HOOK LOG VA 135 10 BLACK CHERRY GOOD 3905495.5780' 11490663.8300' STREAM GRADING TOE WOOD 136 18 RED MAPLE GOOD 3905536.2520' 11490636.8300' STREAM GRADING TOE WOOD 137 8 BLACK WALNUT GOOD 3905578.8840' 11490634.8900' STREAM GRADING TOE WOOD 138 10 TULIP POPLAR GOOD 3905578.7740' 11490633.6800'	128	21	RED MAPLE	GOOD	3905433.3550'	11490615.6500'	STREAM GRADING	J-HOOK LOG VANE	
130 24 QUADRUPLE RED GOOD 3905455.9570' 11490599.3400' STREAM GRADING J-HOOK LOG VA 131 10 BLACK CHERRY GOOD 3905458.4780' 11490587.7300' STREAM GRADING TOE WOOD 133 15 TREE DEAD 3905491.7530' 11490688.2800' CONSTRUCTION ACCESS TOE WOOD 134 30 TULIP POPLAR GOOD 3905495.5780' 11490664.9600' STREAM GRADING J-HOOK LOG VA 135 10 BLACK CHERRY GOOD 3905501.2120' 11490664.9600' STREAM GRADING J-HOOK LOG VA 136 18 RED MAPLE GOOD 3905536.2520' 11490636.8300' STREAM GRADING TOE WOOD 137 8 BLACK WALNUT GOOD 3905578.8840' 11490634.8900' STREAM GRADING TOE WOOD 138 10 TULIP POPLAR GOOD 3905578.8840' 11490614.2100' STREAM GRADING TOE WOOD 139 18 SHAGBARK HICKORY GOOD 3905578.7740' 11490633.6800'	129	15	MOCKERNUT HICKORY	GOOD	3905421.6110'	11490600.9400'	STREAM GRADING	TOE WOOD	
131 10 BLACK CHERRY GOOD 3905458.4780' 11490587.7300' STREAM GRADING TOE WOOD 133 15 TREE DEAD 3905491.7530' 11490608.2800' CONSTRUCTION ACCESS TOE WOOD 134 30 TULIP POPLAR GOOD 3905501.2120' 11490664.9600' STREAM GRADING J-HOOK LOG VAI 135 10 BLACK CHERRY GOOD 3905501.2120' 11490631.0000' STREAM GRADING TOE WOOD 136 18 RED MAPLE GOOD 3905536.2520' 11490636.8300' STREAM GRADING TOE WOOD 137 8 BLACK WALNUT GOOD 3905578.2520' 11490634.8900' STREAM GRADING TOE WOOD 138 10 TULIP POPLAR GOOD 3905578.8840' 11490634.8900' STREAM GRADING TOE WOOD 139 18 SHAGBARK HICKORY GOOD 3905578.7740' 11490633.6800' STREAM GRADING TOE WOOD	130	24	QUADRUPLE RED	GOOD	3905455.9570'	11490599.3400'	STREAM GRADING	J-HOOK LOG VANE	
133 15 TREE DEAD 3905491.7530' 11490608.2800' CONSTRUCTION ACCESS TOE WOOD 134 30 TULIP POPLAR GOOD 3905501.2120' 11490664.9600' STREAM GRADING J-HOOK LOG VAI 135 10 BLACK CHERRY GOOD 3905495.5780' 11490631.0000' STREAM GRADING TOE WOOD 136 18 RED MAPLE GOOD 3905536.2520' 11490636.8300' STREAM GRADING TOE WOOD 137 8 BLACK WALNUT GOOD 3905578.2520' 11490634.8900' STREAM GRADING TOE WOOD 138 10 TULIP POPLAR GOOD 3905578.8840' 11490634.8900' STREAM GRADING TOE WOOD 139 18 SHAGBARK HICKORY GOOD 3905578.7740' 11490633.6800' STREAM GRADING TOE WOOD	131	10	BLACK CHERRY	GOOD	3905458.4780'	11490587.7300'	STREAM GRADING	TOE WOOD	
134 30 TULIP POPLAR GOOD 3905501.2120' 11490664.9600' STREAM GRADING J-HOOK LOG VA 135 10 BLACK CHERRY GOOD 3905495.5780' 11490631.0000' STREAM GRADING TOE WOOD 136 18 RED MAPLE GOOD 3905536.2520' 11490636.8300' STREAM GRADING TOE WOOD 137 8 BLACK WALNUT GOOD 3905578.2520' 11490634.8900' STREAM GRADING TOE WOOD 138 10 TULIP POPLAR GOOD 3905578.8840' 11490614.2100' STREAM GRADING TOE WOOD 139 18 SHAGBARK HICKORY GOOD 3905578.7740' 11490633.6800' STREAM GRADING TOE WOOD	133	15	TREE	DEAD	3905491.7530'	11490608.2800'	CONSTRUCTION ACCESS	TOE WOOD	
135 10 BLACK CHERRY GOOD 3905495.5780' 11490631.0000' STREAM GRADING TOE WOOD 136 18 RED MAPLE GOOD 3905536.2520' 11490636.8300' STREAM GRADING TOE WOOD 137 8 BLACK WALNUT GOOD 3905542.0400' 11490634.8900' STREAM GRADING TOE WOOD 138 10 TULIP POPLAR GOOD 3905578.8840' 11490614.2100' STREAM GRADING TOE WOOD 139 18 SHAGBARK HICKORY GOOD 3905578.7740' 11490633.6800' STREAM GRADING TOE WOOD	134	30	TULIP POPLAR	GOOD	3905501.2120'	11490664.9600'	STREAM GRADING	J-HOOK LOG VANE	
136 18 RED MAPLE GOOD 3905536.2520' 11490636.8300' STREAM GRADING TOE WOOD 137 8 BLACK WALNUT GOOD 3905542.0400' 11490634.8900' STREAM GRADING TOE WOOD 138 10 TULIP POPLAR GOOD 3905578.8840' 11490614.2100' STREAM GRADING TOE WOOD 139 18 SHAGBARK HICKORY GOOD 3905578.7740' 11490633.6800' STREAM GRADING TOE WOOD	135	10	BLACK CHERRY	GOOD	3905495.5780'	11490631.0000'	STREAM GRADING	TOE WOOD	
137 8 BLACK WALNUT GOOD 3905542.0400' 11490634.8900' STREAM GRADING TOE WOOD 138 10 TULIP POPLAR GOOD 3905578.8840' 11490614.2100' STREAM GRADING TOE WOOD 139 18 SHAGBARK HICKORY GOOD 3905578.7740' 11490633.6800' STREAM GRADING TOE WOOD	136	18	RED MAPLE	GOOD	3905536.2520'	11490636.8300'	STREAM GRADING	TOE WOOD	
138 10 TULIP POPLAR GOOD 3905578.8840' 11490614.2100' STREAM GRADING TOE WOOD 139 18 SHAGBARK HICKORY GOOD 3905578.7740' 11490633.6800' STREAM GRADING TOE WOOD	137	8	BLACK WALNUT	GOOD	3905542.0400'	11490634.8900'	STREAM GRADING	TOE WOOD	
139 18 SHAGBARK HICKORY GOOD 3905578.7740' 11490633.6800' STREAM GRADING TOE WOOD	138	10	TULIP POPLAR	GOOD	3905578.8840'	11490614.2100'	STREAM GRADING	TOE WOOD	
	139	18	SHAGBARK HICKORY	GOOD	3905578.7740'	11490633.6800'	STREAM GRADING	TOE WOOD	
140 15 TREE DEAD 3905597.7090' 11490626.7800' STREAM GRADING TOE WOOD	140	15	TREE	DEAD	3905597.7090'	11490626.7800'	STREAM GRADING	TOE WOOD	
141 8 TREE DEAD 3905595.3330' 11490631.9600' STREAM GRADING TOE WOOD	141	8	TREE	DEAD	3905595.3330'	11490631.9600'	STREAM GRADING	TOE WOOD	
142 18 TREE DEAD 3905603.2430' 11490628.4100' STREAM GRADING TOE WOOD	142	18	TREE	DEAD	3905603.2430'	11490628.4100'	STREAM GRADING	TOE WOOD	
143 12 BLACK WALNUT GOOD 3905512.0040' 11490677.0300' STREAM GRADING TOE WOOD	143	12	BLACK WALNUT	GOOD	3905512.0040'	11490677.0300'	STREAM GRADING	TOE WOOD	
144 21 RED MAPLE GOOD 3905497.5400' 11490670.5100' STREAM GRADING J-HOOK LOG VA	144	21	RED MAPLE	GOOD	3905497.5400'	11490670.5100'	STREAM GRADING	J-HOOK LOG VANE	
145 18 RED MAPLE GOOD 3905515.4210' 11490675.5300' STREAM GRADING TOE WOOD	145	18	RED MAPLE	GOOD	3905515.4210'	11490675.5300'	STREAM GRADING	TOE WOOD	
146 8 TULIP POPLAR GOOD 3905482.5060' 11490714.5300' CONSTRUCTION ACCESS TOE WOOD	146	8	TULIP POPLAR	GOOD	3905482.5060'	11490714.5300'	CONSTRUCTION ACCESS	TOE WOOD	
150 12 RED MAPLE GOOD 3905436.4140' 11490716.3600' CONSTRUCTION ACCESS TOE WOOD	150	12	RED MAPLE	GOOD	3905436.4140'	11490716.3600'	CONSTRUCTION ACCESS	TOE WOOD	
152 10 RED MAPLE GOOD 3905415.5300' 11490635.2500' STREAM GRADING TOE WOOD	152	10	RED MAPLE	GOOD	3905415.5300'	11490635.2500'	STREAM GRADING	TOE WOOD	
153 12 RED MAPLE GOOD 3905419.3370' 11490709.5200' STREAM GRADING TOE WOOD	153	12	RED MAPLE	GOOD	3905419.3370'	11490709.5200'	STREAM GRADING	TOE WOOD	

				PROJECT ENGINEER:	C. TABOR		
				DESIGNED BY:	T. SMITH		
				DRAWN BY:	S. KANE	100% DESIGN - ISSUED	
				CHECKED BY:	T. SCHUELER	FOR CONSTRUCTION	Ч
					0 1/2" 1"		7
REV	ISSUED FOR	DATE	BY	NOT TO FULL SCALE			

-ile: 0:\32571-000\32571-001\CAD_BIM\CIVIL\C5 Saved by SKANE Save date: 4/6/2022 11:53 AM

	SCHENKS BRANCH TRIBTUARY TREE REMOVAL TABLE												
TREE ID	DBH	SPECIES	HEALTH	NORTHING	EASTING	REASON FOR REMOVAL	REUSE ACTION						
154	36	TULIP POPLAR	GOOD	3905412.0790'	11490686.7600'	STREAM GRADING	J-HOOK LOG VANE						
155	15	RED MAPLE	GOOD	3905408.9590'	11490721.6500'	STREAM GRADING	TOE WOOD						
156	15	TULIP POPLAR	LEANING	3905388.2220'	11490724.3500'	STREAM GRADING	TOE WOOD						
157	15	TULIP POPLAR	GOOD	3905380.2340'	11490738.1400'	STREAM GRADING	TOE WOOD						
158	8	RED MAPLE	GOOD	3905385.3830'	11490747.5300'	STREAM GRADING	TOE WOOD						
159	36	TULIP POPLAR	GOOD	3905390.9810'	11490756.0100'	STREAM GRADING	J-HOOK LOG VANE						
160	10	RED MAPLE	GOOD	3905379.4510'	11490758.9100'	STREAM GRADING	TOE WOOD						
163	27	TULIP POPLAR	GOOD	3905948.0690'	11490538.3000'	STREAM GRADING	J-HOOK LOG VANE						
164	15	BLACK WALNUT	GOOD	3905910.1020'	11490541.9800'	STREAM GRADING	TOE WOOD						
165	12	BLACK LOCUST	FALLEN	3905878.1980'	11490557.6300'	STREAM GRADING	TOE WOOD						
166	18	BLACK WALNUT	GOOD	3905958.8420'	11490561.8000'	STREAM GRADING	TOE WOOD						
172	21	AMERICAN SYCAMORE	GOOD	3905875.8990'	11490606.0300'	SANITARY SEWER EASEMENT	J-HOOK LOG VANE						
182	18	TULIP POPLAR	GOOD	3905771.9260'	11490610.0700'	STREAM GRADING	TOE WOOD						
188	12	SHAGBARK HICKORY	GOOD	3905649.8800'	11490679.4800'	CONSTRUCTION ACCESS	TOE WOOD						
191	15	TULIP POPLAR	GOOD	3905749.5840'	11490619.2200'	STREAM GRADING	TOE WOOD						
192	18	BLACK WALNUT	GOOD	3905747.0550'	11490605.9200'	STREAM GRADING	TOE WOOD						
193	18	BLACK WALNUT	GOOD	3905738.7770'	11490605.9700'	STREAM GRADING	TOE WOOD						
194	12	TULIP POPLAR	GOOD	3905748.0060'	11490618.0500'	STREAM GRADING	TOE WOOD						
195	10	BLACK WALNUT	DEAD	3905737.1060'	11490600.8700'	STREAM GRADING	TOE WOOD						
196	18	BLACK WALNUT	GOOD	3905725.1090'	11490607.2500'	STREAM GRADING	TOE WOOD						
197	10	EASTERN COTTONWOOD	GOOD	3905719.0210'	11490603.1200'	STREAM GRADING	TOE WOOD						
198	21	BLACK WALNUT	GOOD	3905683.7210'	11490633.4100'	STREAM GRADING	J-HOOK LOG VANE						
199	10	TULIP POPLAR	GOOD	3905672.5310'	11490627.6700'	STREAM GRADING	TOE WOOD						
200	15	TULIP POPLAR	GOOD	3905677.2320'	11490646.2000'	STREAM GRADING	TOE WOOD						
201	18	BLACK WALNUT	GOOD	3905663.5480'	11490637.7200'	STREAM GRADING	TOE WOOD						
202	12	GREEN ASH	DEAD	3905651.5560'	11490647.5600'	STREAM GRADING	TOE WOOD						
203	10	TULIP POPLAR	GOOD	3905599.4090'	11490670.2800'	STREAM GRADING	TOE WOOD						
204	12	TREE	DEAD	3905590.2460'	11490680.7600'	STREAM GRADING	TOE WOOD						
205	36	TULIP POPLAR	GOOD	3905564.9730'	11490671.6300'	STREAM GRADING	J-HOOK LOG VANE						
207	30	BLACK WALNUT	GOOD	3905500.0040'	11490665.4300'	STREAM GRADING	J-HOOK LOG VANE						
208	8	AMERICAN SYCAMORE	GOOD	3905473.6390'	11490702.3900'	CONSTRUCTION ACCESS	TOE WOOD						
211	24	TULIP POPLAR	GOOD	3905724.3220'	11490552.3200'	STREAM GRADING	J-HOOK LOG VANE						
216	27	BLACK CHERRY	GOOD	3905653.7270'	11490605.6200'	STREAM GRADING	J-HOOK LOG VANE						
217	10	BLACK WALNUT	GOOD	3905641.5060'	11490615.6600'	STREAM GRADING	TOE WOOD						
218	9	RED MULBERRY	GOOD	3905822.1290'	11490570.5200'	STREAM GRADING	TOE WOOD						
219	18	BLACK LOCUST	GOOD	3905834.7170'	11490566.7500'	STREAM GRADING	TOE WOOD						
220	10	RED MAPLE	GOOD	3905842.2430'	11490549.3100'	STREAM GRADING	TOE WOOD						
221	8	TREE	DEAD	3905834.8950'	11490565.8100'	STREAM GRADING	TOE WOOD						

CITY OF CHARLOTTESVILLE CHARLOTTESVILLE, VIRGINIA

SCHENKS BRANCH TRIBUTARY STREAM RESTORATION PROJECT

CIVIL TREE REMOVAL TABLES

HAZEN NO.: 32571-003

HAZEN CONTRACT NO.: 202827

DRAWING NUMBER:

DATE:

C5

APRIL 2022

	BASELINE OF CONSTRUCTION (SCHENKS BRANCH TRIBUTARY)											
DESC.	STA.	RADIUS	LENGTH	BEARING	STATE PLANE (E, N)							
L1	100+00.00'		36.16'	S11° 58' 24.30"E	11490556.0630', 3905923.0120'							
C1	100+36.16'	95.03'	48.23'	S18° 22' 51.31"E	11490563.5652', 3905887.6364'							
L2	100+84.39'		23.07'	S35° 01' 06.12"E	11490578.6110', 3905842.3567'							
C2	101+07.46'	54.57'	52.73'	S06° 32' 57.60"E	11490591.8484', 3905823.4646'							
L3	101+60.19'		16.43'	S18° 58' 21.95"W	11490597.6317', 3905773.0908'							
C3	101+76.62'	62.23'	66.56'	S12° 16' 51.81"E	11490592.2914', 3905757.5575'							
L4	102+43.18'		17.98'	S47° 11' 00.49"E	11490605.7848', 3905695.5727'							
C4	102+61.16'	76.24'	62.06'	S22° 46' 51.33"E	11490618.9714', 3905683.3547'							
L5	103+23.22'		20.00'	S02° 18' 26.70"W	11490642.3438', 3905627.7021'							
C5	103+43.22'	135.78'	54.28'	S06° 38' 30.43"E	11490641.5386', 3905607.7183'							
L6	103+97.50'		21.63'	S13° 19' 27.12"E	11490647.7751', 3905554.1600'							
C6	104+19.13'	75.15'	49.12'	S00° 10' 34.98"E	11490652.7600', 3905533.1120'							
L7	104+68.25'		20.74'	S13° 38' 00.10"W	11490652.9085', 3905484.8666'							
C7	104+88.99'	70.36'	88.92'	S29° 17' 54.49"E	11490648.0191', 3905464.7076'							
L8	105+77.91'		23.81'	S72° 39' 33.76"E	11490688.6962', 3905392.2173'							
C8	106+01.72'	60.74'	59.91'	S42° 15' 11.62"E	11490711.4182', 3905385.1225'							
L9	106+61.63'		15.83'	S22° 30' 18.04"E	11490750.0907', 3905342.5523'							
C9	106+77.46'	67.70'	44.85'	S45° 37' 21.85"E	11490756.1498', 3905327.9277'							
L10	107+22.31'		46.81'	S70° 26' 52.39"E	11490787.6211', 3905297.1332'							
END	107+69.11'				11490787.6211', 3905297.1332'							

BASELINE OF	CONSTRUCTION	(UNNAMED	TRIBUTAR
		(0	

DESC.	STA.	RADIUS	LENGTH	BEARING	STATE PLANE (E, N)					
L11	200+00.00'		42.40'	N87° 04' 37.95"E	11490588.1985', 3905441.9183'					
C10	200+42.40'	28.13'	21.51'	S69° 46' 56.99"E	11490630.5396', 3905444.0801'					
END	200+63.91'				11490650.2426', 3905436.8240'					

					PROJECT ENGINEER:	C. TABOR		
r: SKANE					DESIGNED BY:	T. SMITH		TO THE
2 PM B)					DRAWN BY:	S. KANE	100% DESIGN - ISSUED	CO
/2022 2:0:					CHECKED BY:	T. SCHUELER	FOR CONSTRUCTION	PR Lie
ATE: 4/29					IF THIS BAR DOES NOT MEASURE 1" THEN DRAWING IS	0 1/2" 1"		
OT D/	REV	ISSUED FOR	DATE	BY	NOT TO FULL SCALE			

ISSUED FOR

DATE

359.73 348.26	358.35	358.94 360.47	356.82 358.50 357.92	357.79	358.38 361.18	356.34 358.18	357.23 357.14	357.85 361.13	355.46 361.42
	(R2) STA: 100+92.45 ELEV: 359.02 ELEV: 360.72	(N2) STA: 101+07.45 ELEV: 358.85 P ELEV: 358.85 ELEV: 356.53 FLEV: 356.53 FLEV: 360.53	BANKFULL STAGE SLOPE: 0.73%	(R3) STA: 101+63.45 ELEV: 358.50 (N3) STA: 101+76.45 (N3) STA: 101+76.45 STA: 101+76.45 STA: 101+76.45	(P3) STA: 101+90.45 ELEV: 356.00 ELEV: 356.00 ELEV: 356.00 FLEV: 360.00	-EXISTING GRADE	(R4) STA: 102+44.45 ELEV: 357.91 ELEV: 357.91 ELEV: 359.61	(P4) STA: 102+59.45 ELEV: 357.74 (P4) STA: 102+59.45 ELEV: 357.74 CP1 STA: 102+73.45 CP1 STA: 102+73.45 CP1 STA: 102+73.45	ELEV: 335.40

NOTES:

- SEE STREAM PROFILE AND STRUCTURES TABLE ON C10 FOR PROPOSED STREAM STRUCTURES, ALIGNMENT, AND PROFILE.
- 2. R = RIFFLE STATION, N = RUN STATION, P = POOL STATION.
- 3. SIZE STRUCTURES AS SPECIFIED IN CD SERIES.
- CHANNEL GRADING DEFINED PER TYPICAL STREAM CHANNEL CROSS SECTIONS IN CD SERIES.
- . BOULDER DIMENSIONS SHOWN ARE APPROXIMATE. REFER TO CD SERIES FOR MINIMUM BOULDER DIMENSIONS.
- 6. SEE CD SERIES FOR IN-STREAM STRUCTURE FOOT EXCAVATION ELEVATIONS.
- FIELD RUN TOPOGRAPHIC SURVEY WAS SUPPLEMENTED WITH CITY-PROVIDED GIS CONTOURS. MINOR GRADING MODIFICATIONS DURING CONSTRUCTION CAN BE EXPECTED.
- 8. SCHENKS BRANCH TRIBUTARY WIDTH: EXISTING = 12-15 FEET; PROPOSED = 18-22 FEET.

CIVIL SCHENKS BRANCH TRIBUTARY STREAM **RESTORATION PLAN AND PROFILE - 1 OF 2**

32571-003 HAZEN NO.: HAZEN CONTRACT NO.: 202827

DRAWING NUMBER:

DATE:

C7

APRIL 2022

ISSUED FOR

DATE

BY

IF THIS BAR DOES NOT MEASURE 1" THEN DRAWING IS

NOT TO FULL SCALE

0 1/2" 1"

RESTORATION PROJECT

NOTES:

- SEE STREAM PROFILE AND STRUCTURES TABLE ON C10 FOR PROPOSED STREAM STRUCTURES, ALIGNMENT, AND PROFILE.
- 2. R = RIFFLE STATION, N = RUN STATION, P = POOL STATION.
- 3. SIZE STRUCTURES AS SPECIFIED IN CD SERIES.
- 4. CHANNEL GRADING DEFINED PER TYPICAL STREAM CHANNEL CROSS SECTIONS IN CD SERIES.
- 5. BOULDER DIMENSIONS SHOWN ARE APPROXIMATE. REFER TO CD SERIES
- FOR MINIMUM BOULDER DIMENSIONS. 6. SEE CD SERIES FOR IN-STREAM STRUCTURE FOOT EXCAVATION
- ELEVATIONS. 7. FIELD RUN TOPOGRAPHIC SURVEY WAS SUPPLEMENTED WITH CITY-PROVIDED GIS CONTOURS. MINOR GRADING MODIFICATIONS DURING CONSTRUCTION CAN BE EXPECTED.
- 8. SCHENKS BRANCH TRIBUTARY WIDTH: EXISTING = 12-15 FEET; PROPOSED = 18-22 FEET.
- 9. UNNAMED TRIBUTARY TO SCHENKS BRANCH TRIBUTARY (UT1) WIDTH: EXISTING = 15 FEET; PROPOSED = 16-20 FEET.

APRIL 2022 DATE: 32571-003 HAZEN NO.: CIVIL HAZEN CONTRACT NO.: 202827 SCHENKS BRANCH TRIBUTARY STREAM **RESTORATION PLAN AND PROFILE - 2 OF 2** DRAWING NUMBER:

				PROJECT ENGINEER:	C. TABOR		
				DESIGNED BY:	T. SMITH		
				DRAWN BY:	S. KANE	100% DESIGN - ISSUED	CO
				CHECKED BY:	T. SCHUELER	FOR CONSTRUCTION	PRO
				IF THIS BAR DOES NOT	0 1/2" 1"		
				MEASURE 1" THEN DRAWING IS			
REV	ISSUED FOR	DATE	BY	NOT TO FULL SCALE			

		PROJECT ENGINEER:	C. TABOR		
		DESIGNED BY:	T. SMITH		4
		DRAWN BY:	S. KANE	100% DESIGN - ISSUED	
		CHECKED BY:	T. SCHUELER	FOR CONSTRUCTION	
		IF THIS BAR DOES NOT MEASURE 1" THEN DRAWING IS	0 1/2" 1"		
	BV	NOT TO FULL SCALE			

- 007

NOTES:

- 1. SEE STREAM PROFILE AND STRUCTURES TABLE ON C10 FOR PROPOSED STREAM STRUCTURES, ALIGNMENT, AND PROFILE.
- 2. R = RIFFLE STATION, N = RUN STATION, P = POOL STATION.
- 3. SIZE STRUCTURES AS SPECIFIED IN CD SERIES.
- 4. CHANNEL GRADING DEFINED PER TYPICAL STREAM CHANNEL CROSS SECTIONS IN CD SERIES.
- 5. BOULDER DIMENSIONS SHOWN ARE APPROXIMATE. REFER TO CD SERIES FOR MINIMUM BOULDER DIMENSIONS.
- 6. SEE CD SERIES FOR IN-STREAM STRUCTURE FOOT EXCAVATION ELEVATIONS.
- 7. FIELD RUN TOPOGRAPHIC SURVEY WAS SUPPLEMENTED WITH CITY-PROVIDED GIS CONTOURS. MINOR GRADING MODIFICATIONS DURING CONSTRUCTION CAN BE EXPECTED.
- 8. UNNAMED TRIBUTARY TO SCHENKS BRANCH TRIBUTARY (UT1) WIDTH: EXISTING = 15 FEET; PROPOSED = 16-20 FEET.

	CIVIL	
UNNAMED T	FRIBUTARY STREAM RESTO	RATION
	PLAN AND PROFILE	

32571-003 HAZEN NO.: HAZEN CONTRACT NO.: 202827

DRAWING NUMBER:

DATE:

APRIL 2022

REACH	STATION	PROFILE FEATURE	THALWEG ELEVATION	BANKFULL ELEVATION	CROSS SECTION TYPE	STRUCTURE NAME	STRUCTURE TYPE	STRUCTURE DETAIL DRAWING					
	100+00.00	R1	359.69	361.39	RIFFLE	RGC-1	RIFFLE GRADE CONTROL	CD3					
	100+36.45	N1	359.44	361.13	RUN	CV-1	CROSS VANE	CD4					
	100+47.45	P1	357.05	361.05	CENTER POOL								
	100+92.45	R2	359.02	360.72	RIFFLE	RGC-2	RIFFLE GRADE CONTROL	CD3					
	101+07.45	N2	358.85	360.61	RUN	JH-1	J-HOOK VANE	CD5					
	101+18.45	P2	356.53	360.53	LEFT SKEWED POOL								
	101+63.45	R3	358.50	360.20	RIFFLE	RGC-3	RIFFLE GRADE CONTROL	CD3					
	101+76.45	N3	358.36	360.10	RUN	JH-2	J-HOOK VANE	CD5					
	101+90.45	P3	356.00	360.00	RIGHT SKEWED POOL								
	102+44.45	R4	357.91	359.61	RIFFLE	RGC-4	RIFFLE GRADE CONTROL	CD3					
	102+59.45	N4	357.74	359.50	RUN	JH-3	J-HOOK VANE	CD5					
	102+73.45	P4	355.40	359.40	LEFT SKEWED POOL								
	103+27.45	R5	357.30	359.00	RIFFLE	RGC-5	RIFFLE GRADE CONTROL	CD3					
SCHENKS	103+42.45	N5	357.14	358.89	RUN	CV-2	CROSS VANE	CD4					
TRIBUTARY	103+55.45	P5	354.80	358.80	CENTER POOL								
	104+05.45	R6	356.73	358.43	RIFFLE	RGC-6	RIFFLE GRADE CONTROL	CD3					
	104+18.45	N6	356.59	358.34	RUN	CV-3	CROSS VANE	CD4					
	104+29.45	P6	354.26	358.26	CENTER POOL								
	104+75.45	R7	356.22	357.92	RIFFLE	RGC-7	RIFFLE GRADE CONTROL	CD3					
	104+88.45	N7	356.08	357.83	RUN	JH-4	J-HOOK VANE	CD5					
	105+06.45	P7	353.69	357.69	RIGHT SKEWED POOL								
	105+78.45	R8	355.47	357.17	RIFFLE	RGC-8	RIFFLE GRADE CONTROL	CD3					
	105+98.45	N8	355.25	357.02	RUN	JH-5	J-HOOK VANE	CD5					
	106+11.45	P8	352.93	356.93	LEFT SKEWED POOL								
	106+63.45	R9	354.85	356.55	RIFFLE	RGC-9	RIFFLE GRADE CONTROL	CD3					
	106+77.45	N9	354.69	356.45	RUN	CV-4	CROSS VANE	CD4					
	106+95.45	P9	352.31	356.31	CENTER POOL								
	107+69.11	R10	354.07	355.77	RIFFLE								

ile: 0:\32571-000\32571-001\CAD_BIM\CIVIL\C10 Saved by SKANE Save date: 4/6/2022 12:55 PM

SCHENKS BRANCH TRIBUTARY (SBT) PROFILE AND STRUCTURE TABLE

			UNNAMED TRIBUTARY PROFILE & STR						
REACH	STATION	PROFILE FEATURE	THALWEG ELEVATION	BANKFULL ELEVATION	CROSS SECTION TYPE	STRUCTURE NAME			
UNNAMED	200+12.77	C1	359.41	360.41	RUN	C-1			
TRIBUTARY	200+62.00	P10	354.03	357.63	CENTER POOL				

2____UNNAMED TRIB

CITY OF CHARLOTTESVILLE CHARLOTTESVILLE, VIRGINIA

SCHENKS BRANCH TRIBUTARY STREAM RESTORATION PROJECT

	DATE:	APRIL 2022
	HAZEN NO.:	32571-003
CIVIL	HAZEN CONTRAC	CT NO.: 202827
STREAM PROFILE AND STRUCTURE TABLE	DRAWING NUMBER:	

C10

 RUN
 C-1
 ROCK CASCADE
 CD8

 CENTER POOL

STRUCTURE TYPE

STRUCTURE DETAIL DRAWING

UNNAMED TRIBUTARY (UT1) PROFILE AND STRUCTURE TABLE

				PROJECT ENGINEER:	C. TABOR		
				DESIGNED BY:	T. SMITH		
				DRAWN BY:	S. KANE	100% DESIGN - ISSUED	•
				CHECKED BY:	T. SCHUELER	FOR CONSTRUCTION	
				IF THIS BAR DOES NOT MEASURE 1" THEN DRAWING IS	0 1/2" 1"		
REV	ISSUED FOR	DATE	BY	NOT TO FULL SCALE			

360

350

340

CROSS SECTION

H: 1" = 20' - V: 1" = 1'

SCHENKS BRANCH TRIBUTARY STREAM

380

370

360

350

340

60

100+92.45

- 181

30

104+29.45

354 00

-뜨님

358.

350

358.

					C. TABOR		
				LINGINEEK.			
				DESIGNED BY:	T. SMITH		- There
				DRAWN BY:	S. KANE	100% DESIGN - ISSUED	
				CHECKED BY: T.	SCHUELER	FOR CONSTRUCTION	PR Li
				IF THIS BAR DOES NOT	4/01 41		A A A
				MEASURE 1" THEN DRAWING IS	1/2" 1"		
REV	ISSUED FOR	DATE	BY	NOT TO FULL SCALE			7

H: 1" = 10' - V: 1" = 10'

CITY OF CHARLOTTESVILLE CHARLOTTESVILLE, VIRGINIA

SCHENKS BRANCH TRIBUTARY STREAM **RESTORATION PROJECT**

NOTES:

CROSS SECTION VIEWS ARE ORIENTED AS IF LOOKING DOWNSTREAM.

	HORI	ZONTA	L SCA	LE: 1" = 10)'
1	0	5	0		10'
1	0 VEF	5 RTICAL	0 SCALE	E: 1" = 10'	10'
	DAT	E:		APRIL	. 20

HAZEN NO.:	32	571-00
HAZEN CONTRA	CT NO.:	20282

CIVIL
UNNAMED TRIBUTARY STREAM RESTORATION
CROSS SECTIONS

DRAWING NUMBER:

NOTES:

- 1. SEE DWGS C16 AND C17 FOR LANDSCAPING PLAN WHICH DICTATES PERMANENT VEGETATION TYPES AND LOCATIONS WITHIN THE LIMITS OF DISTURBANCE.
- SEE DWGS CD14 AND CD15 FOR LANDSCAPING NOTES AND SCHEDULES.
- 3. ALL AREAS THAT HAVE BEEN DISTURBED AND REQUIRE PERMANENT VEGETATIVE STABILIZATION SHALL RECEIVE TOPSOIL AND SOIL AMENDMENTS, PER SPECIFICATIONS.

CIVIL FINAL PHASE, EROSION AND SEDIMENT CONTROL PLANS

40 20 0 1" = 40'

> APRIL 2022 DATE: 32571-003 HAZEN NO.:

HAZEN CONTRACT NO.: 202827

DRAWING NUMBER:

	CIVIL LANDSCAPING PLAN - 2 OF 2	2 HAZEN CONTRACT NO.: 20282 DRAWING NUMBER: C1
		1" = 20' DATE: APRIL 202 HAZEN NO.: 32571-00
		20 10 0 20'
		ZONE 4 - SANITARY SEWER EASEMENT AND TEMPORARY CONSTRUCTION ROADWAY (14,191 SF)
		ZONE 2 - BACK OF BANKFULL BENCH TO EDGE OF GRADING (35,501 SF)
		ON / PLANTING ZONES AND STABILIZATION ZONE 1 - STREAM TOE TO BACK OF BANKFULL BENCH (8,758 SF)
ALB. D.B. 313, PC		

TM 46-

CITY OF CHARL(D.B. 338, P

NOTE:

* RUN "b" DIMENSION IS VARIABLE BASED UPON PROPOSED STREAM PROFILE. REFER TO STREAM PROFILE AND STRUCTURE TABLES ON DWG C10.

5

CITY OF CHARLOTTESVILLE CHARLOTTESVILLE, VIRGINIA

SCHENKS BRANCH TRIBUTARY STREAM **RESTORATION PROJECT**

NOTES:

- 1. TYPICAL CROSS SECTION VERTICAL CONTROL SHALL BE ABOUT THE THALWEG PER THE STREAM PROFILE.
- 2. TYPICAL CROSS SECTION VIEWS ARE ORIENTED AS IF LOOKING DOWNSTREAM.
- 3. TYPICAL RIFFLE SECTIONS SHALL BE LOCATED AT "R" STATIONS, TYPICAL RUN SECTIONS SHALL BE LOCATED AT "N" STATIONS, AND TYPICAL POOL SECTIONS SHALL BE LOCATED AT THE "P" STATIONS AS SHOWN IN THE CONTRACT DRAWINGS.
- 4. CONTRACTOR SHALL CREATE GRADUAL TRANSITIONS BETWEEN ALL SECTIONS.
- 5. DIMENSIONS PROVIDED IN THE GEOMETRY TABLE SHALL BE USED ALONGSIDE DETAILED GRADING PLANS, FROM DRAWING C6 THROUGH C13.

DIMENSIONS IN FEET							
С	d	e	f	g	h		
0.5	2.4	6.6	5	2			
3.8	6.2	4	2				
8	3	3	2				
3	10	2	2	8	3		
2	6	4	2				
7.2	3	1.8	2.5				

TYPICAL STREAM CROSS SECTIONS GEOMETRY TABLE

DATE:	APRIL 202
HAZEN NO.:	32571-0

HAZEN CONTRACT NO.: 202827

DETAILS TYPICAL STREAM CROSS SECTIONS

DRAWING NUMBER:

CD1

PRACTICE / TYPE OF REVETMENT	SUB-COMPONENT	PURPOSE	MATERIAL	NOMINAL SIZE ¹ (INCHES)	VDOT RIPRAP SIZING	NOTES	DETAIL REFERENCE	GRADING TOLERANCE
	APEX BOULDERS	GRADE CONTROL	RIPRAP	26		FLAT, STACKABLE		
	TOP ARM BOULDER	GRADE CONTROL	RIPRAP	26	DRY RIPRAP CLASS III			
	BOTTOM FOOTERS	GRADE CONTROL	RIPRAP	26				
CROSS VANE (CV) / J-HOOK VANE (JH)	BASE FLOW DIVERTERS	HYDRAULICS	RIPRAP	11			CD4 & CD5	0.5 FT +/- HOR; 0.1 FT +/- VERT
	TRANSITION STONE	HYDRAULICS	RIPRAP	11	DRY RIPRAP CLASS AI			
	POOL STONE	STABILITY	RIPRAP	11				
	BEDDING SUPPORT	STABILITY	GRAVEL	0.75	57 STONE			
RIFFLE GRADE CONTROL (RGC)	RIFFLE GRADE STABILITY MIX	GRADE CONTROL	RIPRAP	11	DRY RIPRAP CLASS AI	CONTRACTOR TO SUPPLEMENT WITH SALVAGED, EXISTING RIPRAP AT JWW PKWY.		
	CHINKING	STABILITY	STREAM BED MATERIAL	HARVESTED STREAM MATERIAL FROM EXISTING CHANNEL (SAND/SBM)	N/A	HARVESTED IN SITU	603	0.5 FT +/- HOR; 0.1 FT +/- VERT
	TOP ROCK	GRADE CONTROL	RIPRAP	26			CD8	0.5 FT +/- HOR; 0.1 FT +/- VERT
TRIBUTARY ROCK CASCADE	BOTTOM FOOTER STONE	GRADE CONTROL	RIPRAP	26	DRY RIPRAP CLASS III			
(-)	BEDDING SUPPORT	STABILITY	GRAVEL	0.75	57 STONE			
	TOE WOOD STONE	STREAM BANK PROTECTION	STREAM BED MATERIAL	11	DRY RIPRAP CLASS AI			
	CHANNEL BOTTOM	STREAM COMPETENCY	RIPRAP	11	DRY RIPRAP CLASS AI			
TOE WOOD (TW)	BACKFILL	STREAM BANK PROTECTION	STREAM BED MATERIAL	HARVESTED STREAM MATERIAL FROM EXISTING CHANNEL (SAND/SBM)		HARVESTED IN SITU	CD6	0.5 FT +/- HOR; 0.1 FT +/- VERT
	EMBEDMENT SILL	SCOUR PROTECTION	RIPRAP	11	DRY RIPRAP CLASS AI			
	GRAVEL	BEDDING SUPPORT	GRAVEL	0.75	57 STONE		CD7	U.3 FT +/- HUR; U.1 FT +/- VERT
¹ NOMINAL SIZE REFERS TO /								

NOMINAL SIZE REFERS TO AVERAGE DIMENSION = MEDIAN AXIS

				PROJECT ENGINEER:	C. TABOR		نىپىد
				DESIGNED BY:	T. SMITH		NOT STOLEN
				DRAWN BY:	S. KANE	100% DESIGN - ISSUED	CO
				CHECKED BY:	T. SCHUELER	FOR CONSTRUCTION	PROL
				IF THIS BAR DOES NOT MEASURE 1" THEN DRAWING IS	0 1/2" 1"		
REV	ISSUED FOR	DATE	BY	NOT TO FULL SCALE			

ROCK SIZING TABLE 1

CITY OF CHARLOTTESVILLE CHARLOTTESVILLE, VIRGINIA

SCHENKS BRANCH TRIBUTARY STREAM **RESTORATION PROJECT**

DETAILS	5
ROCK SIZING	TABLE

HAZEN NO.:

DATE:

HAZEN CONTRACT NO.: 202827

DRAWING NUMBER:

CD2

APRIL 2022

32571-003

BACKFILL WITH STREAM BED MATERIAL (SBM) AS NEEDED TO TIE INTO EXISTING OR PROPOSED GRADE (SEE PROFILE) -

____ EX/PROPOSED BED, TYP -

NOTES:

- 1. IF EXISTING OR PROPOSED UTILITY OCCURS WITHIN THE RGC, COMPLETE PIPE INSTALLATION, REHABILITATION, OR REPLACEMENT WORK AND INSTALL PIPE PROTECTION (IF REQUIRED) PER SEPARATE UTILITY AND PIPE PROTECTION DETAILS PRIOR TO COMPLETING RGC WORK.
- REQUIRED) PER SEPARATE DETAILS PRIOR TO INSTALLING THE RGC.
- 3. CROSS-SECTIONAL DIMENSIONS AND LONGITUDINAL SPACING OF FEATURES VARY. SEE STRUCTURE TABLES, TYPICAL SECTIONS, DETAILED CROSS SECTIONS, AND PROFILES FOR DIMENSIONS OF EACH INDIVIDUAL STRUCTURE.
- 4. RIFFLE GRADE CONTROL STONE SHALL BE PLACED SO THAT IT SHINGLES IN A DOWNSTREAM DIRECTION. SMALL AND LARGE STONES SHALL BE MIXED PRIOR TO IN-STREAM PLACEMENT TO PERMITTED.
- 5. CHINK ALL RGC VOIDS WITH SBM PER ROCK SIZING TABLE.
- 6. THERE MAY BE NO GLIDE OR RUN TRANSITION WHERE THE CONTROLS.
- 7. THALWEG MAY BE MODIFIED IN FIELD PER THE ENGINEER.
- DWG CD1.
- 9. CONTRACTOR, TO PROVIDE 5' OF GLIDE TRANSITION, UPSTREAM OF UPSTREAM CREST.

STRUCTURE #	UPSTREAM STA	DOWNSTREAM STA	STREAMBED ELEV X (MSL)	STREAMBED ELEV Y (MSL)	LENGTH L (FT)	RIFFLE SLOPE (%)	BANKFULL WIDTH W1 (FT)	TOE WIDTH W2 (FT)	STONE WIDTH W3 (FT)	STONE HEIGHT HS (FT)
RGC-1	100+00.00	100+36.45	359.69	359.44	36.45	0.7%	18	13.2	17	1.1
RGC-2	100+92.45	101+07.45	359.02	358.85	15	1.1%	18	13.2	17	1.1
RGC-3	101+63.45	101+76.45	358.5	358.36	13	1.1%	18	13.2	17	1.1
RGC-4	102+44.45	102+59.45	357.91	357.74	15	1.1%	18	13.2	17	1.1
RGC-5	103+27.45	103+42.45	357.3	357.14	15	1.1%	18	13.2	17	1.1
RGC-6	104+05.45	104+18.45	356.73	356.59	13	1.1%	18	13.2	17	1.1
RGC-7	104+75.45	104+88.45	356.22	356.08	13	1.1%	18	13.2	17	1.1
RGC-8	105+78.45	105+98.45	355.47	355.25	20	1.1%	18	13.2	17	1.1
RGC-9	106+63.45	106+77.45	354.85	354.69	14	1.1%	18	13.2	17	1.1

					PROJECT	C. TABOR		
Y: SKANE					DESIGNED BY:	T. SMITH		N.W.
5 PM B					DRAWN BY:	S. KANE	ISSUED	
9/2022 2:0					CHECKED BY: T.	SCHUELER	FOR CONSTRUCTION	JRO L
≣: 4/26					IF THIS BAR DOES NOT 0	1/2" 1"		
OT DATE	REV	ISSUED FOR	DATE	BY	MEASURE 1" THEN DRAWING IS NOT TO FULL SCALE			

RIFFLE GRADE CONTROL (RGC) DETAIL 1 NI S

2

SCHENKS BRANCH TRIBUTARY PROJECT, RIFFLE GRADE CONTROL (RGC) SCHEDULE

CITY OF CHARLOTTESVILLE CHARLOTTESVILLE, VIRGINIA

SCHENKS BRANCH TRIBUTARY STREAM **RESTORATION PROJECT**

C	n	ຸ
U	$\boldsymbol{\nu}$	J

DETAILS RIFFLE GRADE CONTROL STRUCTURE

DRAWING NUMBER:

32571-003 HAZEN NO.: HAZEN CONTRACT NO.: 202827

APRIL 2022 DATE:

STRUCTURE #								
	STA							
CV-1	OFFSET							
	ELEV							
	STA							
CV-2	OFFSET							
	ELEV							
	STA							
CV-3	OFFSET							
	ELEV							
	STA							
CV-4	OFFSET							
	ELEV							

					PROJECT ENGINEER:	C. TABOR		_
SKANE :					DESIGNED BY:	T. SMITH		
5 PM BY					DRAWN BY:	S. KANE	100% DESIGN - ISSUED	
2022 2:0					CHECKED BY:	T. SCHUELER	FOR CONSTRUCTION	PR
E: 4/29,					IF THIS BAR DOES NOT	0 1/2" 1"		
LOT DAT	REV	ISSUED FOR	DATE	BY	MEASURE 1" THEN DRAWING IS NOT TO FULL SCALE			

APEX	STONE TIE-IN AT BANK				SCOUR	VANE	VANE ANGLE	SILL EMBEDMENT LENGTH E (FT)	SCOUR POOL	BANKFULL	ROCK DIVER
X	LEFT	RIGHT		Z1 Z2		SLOPE (%)	a (DEGREES)		LS (FT)	WIDTH W (FT)	SFACING S (FT)
100+36.45	100+48.45	100+48.45	100+47.45	-	100+52.45		(L) 25% (R) 25%	(L) 5 (R) 5	16	18	0.2
-	12	12	11	-	-	(L) 3.7% (R) 3.7%					
359.44	359.884	359.884	357.05	-	357.27						
103+42.45	103+54.45	103+54.45	103+55.45	-	103+60.45	(L) 3.7%	(L) 25% (R) 25%	(L) 5 (R) 5			0.2
-	12	12	13	-	-				18	18	
357.14	357.584	357.584	354.8	-	354.99						
104+18.45	104+30.45	104+30.45	104+29.45	-	104+34.45			(L) 5 (R) 5		18	0.2
-	12	12	11	-	-	1 (L) 3.7% (R) 3.7%	(L) 25% (R) 25%		16		
356.59	357.034	357.034	354.26	-	354.47		()				
106+77.45	106+89.45	106+89.45	106+95.45	-	107+24.45			<i>(</i> 1.) <u>-</u>			
-	12	12	18	-	-	(L) 3.7% (L) 25% (B) 3.7% (B) 25%	(L) 5 (B) 5	47	18	0.2	
354.69	355.134	355.134	352.31	-	352.43		(11) 2370				

CROSS VANE (CV) SCHEDULE

CITY OF CHARLOTTESVILLE CHARLOTTESVILLE, VIRGINIA

SCHENKS BRANCH TRIBUTARY STREAM **RESTORATION PROJECT**

1. NUMBER OF STACKED FOOTER ROCKS REQUIRED TO ACCOMPLISH DESIGN FOOTER DEPTH MAY VARY. SEE DETAIL TABLE AND ROCK SIZING CHART FOR STONE DIMENSIONS AND MIN FOOTER DEPTHS (D_f).

2. ALL DIMENSIONS/ELEVATIONS TO BE FIELD ADJUSTED TO ENSURE STABLE INSTALLATION, FISH PASSAGE, AND TIE-IN TO

3. VANE STONES SHALL BE BOULDERS WITH RECTANGULAR BLOCK SHAPE AND MINIMUM D50 DIMENSION OF 18 INCHES IN ANY DIRECTION UNLESS NOTED OTHERWISE (SEE ROCK SIZING CHART).

4. ROCKS/BOULDERS SHALL BE TIGHT FITTING WITH NO VOIDS/GAPS LARGER THAN 1 INCH. VOIDS ALONG APEX AND VANE ARMS SHALL BE CHINKED-IN WITH SMALLER NON-WEATHERING STONE TO ESTABLISH SURFACE FLOW AND INTERCONNECTION OF ROCKS.

5. ROCKS/BOULDERS ALONG APEX AND VANE ARMS SHALL BE FLUSH WITH THE TOP SURFACES OF ADJACENT STONES. 6. TOP ROCKS SHALL BE SUPPORTED BY A FOOTER ROCK AND SHINGLED UPSTREAM.

7. STONE PLACEMENT SHALL BE FIELD ADJUSTED TO ENSURE STONE WILL REMAIN IN PLACE OVER FULL RANGE OF FLOW CONDITIONS.

8. REPLACEMENT OF ROCKS/BOULDERS MAY BE REQUIRED BASED UPON INSPECTION OF COMPLETED INSTALLATION TO MEET DESIGN INTENT AND PERMIT REQUIREMENTS.

9. SPACING BETWEEN DIVERTER ROCKS SHALL BE 1/3 TO 1/2 THE LENGTH OF THE APEX STONE LENGTH UNLESS NOTED OTHERWISE (SEE DETAIL TABLE). DIVERTER STONES SHALL BE PLACED SO THAT THE TOP SURFACE IS 3 TO 6 INCHES ABOVE THE APEX ROCK ELEVATION.

10. TIE-IN SILLS SHALL BE EMBEDDED 4 FT (MIN) INTO STABLE CHANNEL BANK UNLESS NOTED OTHERWISE (SEE DETAIL TABLE).

11. ANGLE OF VANE ARM SHALL BE BETWEEN 20 (MIN) AND 30 (MAX) DEGREES UNLESS NOTED OTHERWISE (SEE DETAIL

12. SLOPE OF VANE ARM SHALL BE BETWEEN 2% (MIN) AND 7% (MAX) UNLESS NOTED OTHERWISE (SEE DETAIL TABLE). ARM SLOPE IS MEASURED FROM APEX POINT X TO BANK TIE-IN POINT Y.

13. PLACE FILTER FABRIC (NON-WOVEN) ON UPSTREAM FACE OF ROCKS FOR THE ENTIRE STRUCTURE INCLUDING APEX, VANE AND TIE-IN SILLS. FABRIC SHALL EXTEND BENEATH THE FOOTER ROCKS.

14. WHERE EXISTING BED MATERIAL IN SCOUR POOLS MATCHES SIZE AND MATERIAL OF STREAM BED MATERIAL (SBM) MIX, SCOUR POOL STONE LINING IS NOT REQUIRED UNLESS NOTED OTHERWISE. WHERE SCOUR POOL LIES IN CLAY OR OTHER SUBSTRATE FINER THAN THE SBM MIX, THE CONTRACTOR SHALL OVER EXCAVATE BY 6 INCHES (MIN.) UNLESS NOTED OTHERWISE (SEE DETAIL TABLE) AND PLACE SBM MIX TO PROPOSED GRADE OR AS DIRECTED BY THE ENGINEER.

15. STREAM BED MATERIAL SHALL COME FROM SALVAGED SOURCE FIRST AND THEN FURNISHED AS NECESSARY. OFFSITE STREAMBED MATERIAL SHALL BE USED TO CHOKE BOTTOM LAYERS OF ROCK WITH SALVAGED MATERIAL SAVED FOR TOP.

16. ROCKS (APEX, ARM, AND FOOTERS) ARE PLACED AT 6:1 CAMBER WITH HORIZONTAL.

RTER SCOUR POOL FOOTER DEPTH STONE DEPTH DF DS (FT) (FT) 4.4 1.3 4.4 1.3 1.3 4.4 4.4 1.3

> APRIL 2022 DATE: 32571-003 HAZEN NO.:

HAZEN CONTRACT NO.: 202827

DETAILS CROSS VANE

DRAWING NUMBER:

AT BANK Y	LOG AT BANK Y'	MAX POOL Z1	MAX POOL Z2	SCOUR POOL STONE Z3	VANE SLOPE (%)	VANE ANGLE a (DEGREES)	LOG LENGTH LL (FT)	SCOUR POOL STONE LENGTH LS (FT)	BANKFULL WIDTH W (FT)
·19.45	101+19.45	101+18.45	-	101+23.45					
12	12	11	-	-	3.7	25	20	16	18
9.29	359.29	356.53	-	356.75					
·88.45	101+88.45	101+90.45	-	101+95.45		25	20	19	18
12	12	14	-	-	3.7				
8.80	358.80	356.00	-	356.18					
·71.45	102+71.45	102+73.45	-	102+78.45	3.7	25			
12	12	14	-	-			20	19	18
8.18	358.18	355.40	-	355.58					
·00.45	105+00.45	105+06.45	-	105+46.45		25	20	58	18
12	12	18	-	-	3.7				
6.52	356.52	353.69	-	354.68					
·10.45	106+10.45	106+11.45	-	106+16.45					
12	12	13	-	-	3.7	25	20	18	18
5.69	355.69	352.93	-	353.11					
			2 J-HO	OK (JH) SCHED	DULE				

STRUCTURE #	BANK	UPSTREAM STATION	DOWNSTREAM STATION	LENGTH (FT)	CHANNEL BOTTOM ELEV E1 (MSL)	FOOTER LOG INV. ELEV E2 (MSL)	TOP LOG INV. ELEV E3 (MSL)	TOP LOG TOP ELEV E4 (MSL)	DESIGN POOL ELEV (MSL)	
TW-1	LEFT	101+19.45	101+51.45	32	355.03	356.33	357.33	358.33	356.53	
TW-2	RIGHT	101+88.45	102+23.45	35	354.47	355.77	356.77	357.77	356.00	
TW-3	LEFT	102+71.45	103+11.45	40	353.79	355.09	356.09	357.09	355.40	
TW-4	RIGHT	105+25.45	105+45.45	20	351.92	353.22	354.22	355.22	353.69	
TW-5	LEFT	106+10.45	106+46.45	36	351.31	352.61	353.61	354.61	352.93	

SURFACE OF THE SOD MATS. TIGHTLY WRA
THE NYLON CORD AROUND EACH STAKE
WEAVING IT IN A FIGURE EIGHT PATTERN.

TOE WOOD (TW) SCHEDULE

CITY OF CHARLOTTESVILLE CHARLOTTESVILLE, VIRGINIA

SCHENKS BRANCH TRIBUTARY STREAM **RESTORATION PROJECT**

				PROJECT ENGINEER:	C. TABOR		يد
				DESIGNED BY:	T. SMITH		
				DRAWN BY:	S. KANE	100% DESIGN - ISSUED	ČŐ U
				CHECKED BY:	T. SCHUELER	FOR CONSTRUCTION	PRO
				IF THIS BAR DOES NOT	0 1/2" 1"		
RE	/ ISSUED FOR	DATE	BY	NOT TO FULL SCALE			ר

INSTREAM STATION	TYPE	LENGTH	WALL SLOPE	NUMBER OF LIFTS	TOP ELEVATION TIE IN	NOTE
102+23.45	WITH COIR BLOCK	60	3H:1V	2	363	NO TOE ROCK
105+45.45	WITH COIR BLOCK	41	2H:1V	2	361	NO TOE ROCK
107+25.45	WITH COIR BLOCK	62	2H:1V	3	360	NO TOE ROCK
			·			

CITY OF CHARLOTTESVILLE CHARLOTTESVILLE, VIRGINIA

SCHENKS BRANCH TRIBUTARY STREAM **RESTORATION PROJECT**

COIR MAT (REFER TO DETAIL)	
IAX. OST MIX DETAIL	NG BANK T (ECM)
STAGGER HARDWOOD STAKES ETERE (EACH LAYER)	

APRIL 2022 DATE: 32571-003 HAZEN NO.: DETAILS HAZEN CONTRACT NO.: 202827 SOIL LIFT DRAWING NUMBER:

ES K REQUIRED **KREQUIRED KREQUIRED**

CD7

4/6/2022 9:23 AM
ate:
E Save d
ANE
y Sk
ed b
Sav
CD8
ILS\(
ETA
MNDE
B
CAD
001
571-
0\32
1-00
257
0:\3

				PROJECT ENGINEER:	C. TABOR		
				DESIGNED BY:	T. SMITH		M
				DRAWN BY:	S. KANE	100% DESIGN - ISSUED	COL
				CHECKED BY:	T. SCHUELER	FOR CONSTRUCTION	PRO
				IF THIS BAR DOES NOT MEASURE 1" THEN DRAWING IS	0 1/2" 1"		
REV	ISSUED FOR	DATE	BY	NOT TO FULL SCALE			

STRUCTURE #	UPSTREAM STA.	DOWNSTREAM STA.	ELEV. X1 (MSL)	ELEV. X2 (MSL)	LENGTH L (FT)	BANK HEIGHT H (FT)	BANK WIDTH W1 (FT)	TOE WIDTH W2 (FT)	EMBEDMENT LENGTH E (FT)	FOOTER DEPTH Df (FT)	SLOPE M (H:V)	NOTES
C-1	200+12.77	200+50.00	359.41	355.34	37.23	1	16	12	5	4.4	2	SEE ROCK SIZING CHART

ROCK CASCADE (C) SCHEDULE

CITY OF CHARLOTTESVILLE CHARLOTTESVILLE, VIRGINIA

SCHENKS BRANCH TRIBUTARY STREAM RESTORATION PROJECT

	DATE:	APRIL 2022
	HAZEN NO.:	32571-003
DETAILS	HAZEN CONTRA	CT NO.: 202827
ROCK CASCADE	DRAWING NUMBER:	

- 1. COCONUT EROSION CONTROL BLANKET SHALL BE 'ROLANKA BIO-D 70' OR APPROVED EQUAL, ABLE TO WITHSTAND 12 FPS WATER VELOCITIES AND 4.5 PSF SHEAR STRESS. FABRIC EMBEDMENT 3.0 FT.
- 2. PREPARE SOIL BEFORE INSTALLING ROLLED EROSION CONTROL PRODUCTS (RECP), INCLUDING ANY NECESSARY APPLICATION OF LIME, FERTILIZER AND SEED.
- 3. BEGIN AT THE BOTTOM OF THE SLOPE, WORKING FROM DOWNSTREAM UP, AND ANCHOR FIBER MATTING IN A 12" DEEP INITIAL ANCHOR TRENCH. BACKFILL TRENCH AND TAMP EARTH FIRMLY.
- 4. OVERLAP EDGES OF ADJACENT PARALLEL ROLLS 12" AND ANCHOR AT 12" CENTERS WITH THE UPPER ROLL OVERLAPPING THE TOP OF THE LOWER ROLL.
- 5. WHEN FIBER MAT MUST BE SPLICED, PLACE END OVER END (SHINGLE STYLE IN DIRECTION OF FLOW) WITH 12" OVERLAP AND ANCHOR USING TWO STAGGERED ROWS OF STAKES AT 6" CENTERS. ADDITIONAL FASTENING MAY BE REQUIRED WHERE MATTING IS CUT TO INSTALL PLANTINGS.
- 6. LAY FIBER MAT LOOSELY AND ANCHOR SUFFICIENTLY TO MAINTAIN DIRECT CONTACT WITH THE SOIL - DO NOT STRETCH.
- 7. FOR SLOPES 2:1 AND STEEPER USE A MINIMUM OF (3) 24-INCH WOOD STAKES PER SQUARE YARD AND FOR SLOPES FLATTER THAN 2:1 USE A MINIMUM OF (2) 24-INCH WOOD STAKES PER SQUARE YARD. PROVIDE ADDITIONAL STAKING ALONG CHANNEL BOTTOM WHERE COIR MAT FORMS TOE OF SLOPE.
- 8. WOOD STAKES SHALL BE ANGLED SUCH THAT EXPOSED PORTION (2"-4") FACES UPSTREAM.
- 9. ANCHOR, FILL, AND COMPACT END OF FIBER MATTING IN 12"x6" TERMINAL ANCHOR TRENCH (MIRROR IMAGE OF INITIAL TRENCH).
- * 10. ANCHORING DIMENSIONS TO BE REDUCED IN AREAS OF NATURAL RESOURCES TO BE PROTECTED.
- **11. EROSION CONTROL MATTING MAY BE EXTENDED UP STREAM BANK AS DIRECTED.
- 12. SEED, STRAW, AND FERTILIZER NOT REQUIRED IN KEY TRENCH.

SILT FENCE (TYP) DETAILS SF NTS

RICHMOND, VA, 23230

CITY OF CHARLOTTESVILLE CHARLOTTESVILLE, VIRGINIA

SCHENKS BRANCH TRIBUTARY STREAM **RESTORATION PROJECT**

PIPE OUTLET TO WELL

TABLE 3.31-C

TEMPORARY SEEDING PLANT MATERIALS, SEEDING RATES, AND DATES

	SEEDING I	RATE	NORTH ^a			5	SOUTE		
SPECIES	Acre	1000 ft ²	3/1 to 4/30	3/1 5/1 to to 4/30 8/15	8/15 to 11/1	2/15 to 4/30	5/1 to 9/1	9/1 to 11/15	CHARAC
OATS (Avena sativa)	3 bu. (up to 100 lbs., not less than 50 lbs.)	2 lbs.	x	-	÷	x	-	-	Use spring varie
RYE ^d (Secale cereale)	2 bu. (up to 110 lbs., not less than 50 lbs.)	2.5 lbs.	х	•	x	x	•	х	Use for late fall cover. Tolerates moisture.
GERMAN MILLET (<u>Setaria italica</u>)	50 lbs.	approx. 1 lb.		x	•	•	x	-	Warm-season an frost. May be a mixes.
ANNUAL RYEGRASS ^c (Lolium multi-florum)	60 lbs.	1½ lbs.	x		x	x	•	x	May be added in mow out of mos
WEEPING LOVEGRASS (Eragrostis curvula)	15 lbs.	5½ ozs.	-	х	÷		x	12	Warm-season per bunch. Tolerate and acid, inferti added to mixes.
KOREAN LESPEDEZA [°]	25 lbs.	approx. 1½ lbs.	x	x	÷	x	x	4	Warm season an Tolerates acid s added to mixes.

a Northern Piedmont and Mountain region. See Plates 3.22-1 and 3.22-2.
b Southern Piedmont and Coastal Plain.
c May be used as a cover crop with spring seeding.
d May be used as a cover crop with fall seeding.
V May be plated between these dates.

X May be planted between these dates.
May not be planted between these dates.

TABLE 3.32-D SITE SPECIFIC SEEDING MIXTURES FOR PIEDMONT AREA

Minimum Care Lawn

- Commercial or Residential - Kentucky 31 or Turf-Type Tall Fescue
- Improved Perennial Ryegrass
- Kentucky Bluegrass

High-Maintenance Lawn

- Kentucky 31 or Turf-Type Tall Fescue

General Slope (3:1 or less)

- Kentucky 31 Fescue
- Red Top Grass
 Seasonal Nurse Crop *

Low-Maintenance Slope (Steeper than 3:1)

- Kentucky 31 Fescue
- Red Top Grass
- Seasonal Nurse Crop *

* Use seasonal nurse crop in accordance with seeding dates as stated below: February 16th through April Annual Rye May 1st through August 15th Foxtail Millet August 16th through October Annual Rye November through February 15th Winter Rye

** Substitute Sericea lespedeza for Crownvetch east of Farmville, Va. (May If Flatpea is used in lieu of Crownvetch, increase rate to 30 lbs./acre. All legume seed must be properly inoculated. Weeping Lovegrass may be added to any slope or low-maintenance mix during warmer seeding periods; add 10-20 lbs./acre in mixes.

Hazen TYLER W. SMITH Lic. No. 63968 HAZEN AND SAWYER 1555 ROSENEATH ROAD RICHMOND, VA, 23230

CITY OF CHARLOTTESVILLE CHARLOTTESVILLE, VIRGINIA

SCHENKS BRANCH TRIBUTARY STREAM **RESTORATION PROJECT**

LANT CTERISTICS rieties (e.g., Noble). all seedings, winter tes cold and low ---annual. Dies at first added to summer d in mixes. Will most stands. perennial. May ates hot, dry slopes ertile soils. May be annual legume. | soils. May be | ss.

(MU)

Total Lbs. Per Acre

175-200 lbs. 95-100% 0-5% 0-5%

200-250 lbs.

100%

128 2	lbs. Ibs.
20	lbs.
150	lbs.

108	lbs.
2	lbs.
20	lbs.
20	lbs.
150	lbs.

TABLE 3.35-A ORGANIC MULCH MATERIALS AND APPLICATION RATES							
	RA	TES:					
MULCHES:	Per Acre	Per 1000 sq. ft.	NOTES:				
Straw or Hay	1 ¹ / ₂ - 2 tons (Minimum 2 tons for winter cover)	70 - 90 lbs.	Free from weeds and coarse matter. Must be anchored. Spread with mulch blower or by hand.				
Fiber Mulch	Minimum 1500 lbs.	35 lbs.	Do not use as mulch for winter cover or during hot, dry periods.* Apply as slurry.				
Corn Stalks	4 - 6 tons	185 - 275 lbs.	Cut or shredded in 4-6" lengths. Air-dried. Do not use in fine turf areas. Apply with mulch blower or by hand.				
Wood Chips	4 - 6 tons	185 - 275 lbs.	Free of coarse matter. Air- dried. Treat with 12 lbs nitrogen per ton. Do not use in fine turf areas. Apply with mulch blower, chip handler, or by hand.				
Bark Chips or Shredded Bark	50 - 70 cu. yds.	1-2 cu. yds.	Free of coarse matter. Air- dried. Do not use in fine turf areas. Apply with mulch blower, chip handler, or by hand.				

	DATE:	APRIL 2022
	HAZEN NO.:	32571-003
DETAILS	HAZEN CONTRA	ACT NO.: 202827
EROSION AND SEDIMENT CONTROL DETAILS - 2 OF 3	DRAWING NUMBER:	

CD11

<u>PURPOSE</u>

4VAC50-60-54 of the Virginia Stormwater Management Program (VSMP) Permit Regulations requires that Stormwater Pollution Prevention Plan (SWPPP) be developed for all regulated land disturbing activities. The SWPPP must include, but not be limited to, an approved erosion and sediment control plan, an approved stormwater management plan, and this **Pollution Prevention Plan** (PPP) for regulated land disturbing activities, and a description of any additional control measures necessary to address a TMDL as applicable.

The plan for implementing pollution prevention measures during construction activities developed on this sheet must be implemented and updated as necessary. Any PPP requirements not included on this sheet must be incorporated into the SWPPP required by 4VAC50-60-54 that must be developed before land disturbance commences. This 🗸 Each facility must have appropriate signage to inform users where the dedicated PPP identifies potential sources of pollutants that may reasonable be expected to affect the quality stormwater discharges from the construction site (both on- and off-site activities) and describes control measures that will be used to minimize pollutants in stormwater discharges from the construction site.

OTHER REFERENCED PLANS

SWPPP requirements may be fulfilled by incorporating, by reference, other plans. All plans incorporated by reference become enforceable under the VSMP Permit Regulations and General Permit VAR10 for Discharges of Stormwater from Construction Activities. If a plan incorporated by reference does not contain all of the required elements of the PPP, the operator must develop the missing elements and include them in the SWPPP.

Independent Plans Incorporated by Reference	Date Approved
Stormwater Management Plans (Regional or Master)	N/A
Spill Prevention, Control, and Countermeasure Plans	N/A
Off-Site Stockpile	N/A
Off-Site Borrow Area	N/A

POTENTIAL POLLUTANT SOURCES

The following sources of potential pollutants must be addressed in the Pollution Prevention Plan. Various controls and/or measures designed to prevent and/or minimize pollutants in stormwater discharges from the project site must be applied to the sources found on the site. Additional information concerning the following controls and/or measures may be found in the SWPPP. Deviations from the location criteria may be approved by the City of Charlottesville Inspector.

LEAKS, SPILLS, AND OTHER RELEASES

- The operator(s) shall ensure procedures are in place to prevent and respond to all leaks, spills and other releases of pollutants.
- The operator(s) shall ensure all leaks, spills and other releases of pollutant are contained and cleaned immediately upon discovery. Any contaminated materials are to be disposed in accordance with federal, state, and/or local requirements.
- The operator(s) shall ensure spill containment kits containing appropriate materials (e.g., absorbent material and pads, brooms, gloves, sand, etc.) are available at appropriate locations, including, but not limited to: designated areas for vehicle and equipment maintenance; vehicle and equipment fueling; storage and disposal of construction materials, products, and waste; and storage and disposal of hazardous and toxic materials; and sanitary waste facilities.
- The locations of the spill containment kits are identified as described below:

Date	Shown on Plan Sheet #(s)		Location					
Approved Plan	C14	STAGING A	REA					
		REVISIONS TC	LOCATIONS					
Date	Date Shown on Plan Sheet Location #(s)							
✓ The ope spills, ar surface v 24 after City of Charlo	 ✓ The operator(s) shall notify the Department of Environmental Quality (DEQ) of leaks, spills, and other releases that discharge to or have the potential to discharge to surface waters immediately upon discovery of the discharge but in no case later than 24 after the discovery. Written notice of the discharge must be sent to DEQ and City of Charlottesville Department of Public Works within five (5) days of the discovery. Virginia Department of City of Charlottesville Environmental Quality Department of Public Works Valley Regional Office 305 4th St, NW 4411 Early Road Charlottesville, VA 22903 Harrisonburg, VA 22801 404-970-3301 540-574-7800 (phone) 840-698-4178 (fax) or online 							
DISC	HARGES	<u>FROM OTHER</u> SOUR	<u>CES</u>	<u>IANI</u>				
✓ Discharg flushing, addresse	✓ Discharges from other pollutant sources (e.g., water line flushing, storm sewer flushing, above ground storage tanks, etc.) not mentioned elsewhere must be addressed.							
Other I	Potential Pollu	tant Sources	Location(s) of Potential Pollu	tant Sources				

Above ground oil storage tanks with a storage capacity exceeding 1,320 gallons and have a reasonable expectation of a discharge into or upon Waters of the United States are required to have a Spill Prevention Control and Countermeasure (SPCC)

The discharge of contaminated flush water and material removed during flushing operations must be collected and disposed of in accordance with appropriate federal state and local requirements

VEHICLE FUELING AND MAINTENANCE

- ✓ Conduct regular maintenance in a *dedicated area* that is located to maximize the distance from storm drain inlets, ditches, waterbodies or wetlands but no less than 50 feet from those features.
- \checkmark If fueling is conducted at a *dedicated area*, the location must be located to maximize the distance from storm drain inlets, ditches, waterbodies or wetlands but no less than 50 feet from those features.
- ✓ The *dedicated areas* must be designed to eliminate the discharge of spilled and leaked fuels and chemicals from vehicle fueling and maintenance activities by providing secondary containment (spill berms, decks, spill containment pallets,
- providing cover where appropriate, and having spill kits readily available). area(s) are located.

Date	Shown on Plan Sheet #(s)	Location of <i>Dedicated Area(s)</i>	
Approved Plan	N/A	OFFSITE	
		REVISIONS TO LOCATIONS	
Date	Shown on Plan Sheet #(s)	Location of <i>Dedicated Area(s)</i>	Operator Initials

- \checkmark If mobile fueling will be used, the fueling must be done in an area that located to maximize the distance from storm drain inlets, ditches, waterbodies or wetlands but no less than 50 feet from those features.
- ✓ Spill kits must be readily available at all mobile fueling locations.
- ✓ On-site storage tanks must have a means of secondary containment (spill berms.
- decks, spill containment pallets, etc.) and must be covered where appropriate. ✓ All vehicles on site must be monitored for leaks and receive regular preventive maintenance to reduce the chance of leakage.

DISCHARGE FROM STORAGE, HANDLING, AND DISPOSAL OF CONSTRUCTION PRODUCTS, MATERIALS, AND WASTE

- \checkmark Storage of construction products, materials, and waste is to be conducted in dedicated areas
- ✓ The *dedicated area* must be located to maximize the distance from storm drain inlets, ditches, waterbodies or wetlands but no less than 50 feet from those features. Separations of less than 50 feet may be approved by the Environmental Inspector.
- The dedicated areas must be designed to minimize the discharge of pollutants from storage, handling, and disposal of construction products, materials and wastes including (i) building products such as asphalt sealants, copper flashing, roofing materials, adhesives, concrete admixtures; (ii) pesticides, herbicides, insecticides, fertilizers, and landscape materials; and (iii) construction and domestic wastes such as packaging materials, scrap construction materials, masonry products, timber, pipe and electrical cuttings, plastics, Styrofoam, concrete and other trash or building products.
- Each facility must have appropriate signage to inform users where the *dedicated* area(s) are located.

Date	Shown on Plan Sheet #(s)	Location(s) of <i>Dedicated Area(s)</i> for storage of constructio products and materials					
Approved Plan	C14	STAGING AREA					
		REVISIONS TO LOCATIONS					
Date	Shown on Plan Sheet #(s)	Location(s) of <i>Dedicated Area(s)</i> for storage of construction products and materials	Operator(s Initials				
	ł						
Date	Shown on Plan Sheet #(s)	Location(s) of Dedicated Area(s) for wast construction products and materials	e from				
Approved Plan	N/A	OFFSITE					
		REVISIONS TO LOCATIONS					
Date	Shown on Plan Sheet #(s)	Location(s) of Dedicated Area(s) for waste from construction products and materials	Operator(s Initials				

- ✓ Follow all federal, state, and local requirements that apply to the use, handling and disposal of pesticides, herbicides, and fertilizers.
- ✓ Keep chemicals on-site in small quantities and in closed, well marked containers.
- \checkmark Clean up solid waste, including building materials, garbage, and debris on a daily basis and deposit into covered dumpsters that are periodically emptied.
- \checkmark Schedule waste collection to prevent exceeding the capacity of onsite containers. Additional containers may be necessary depending on the phase of construction (e.g., demolition, etc.)
- ✓ Dispose of all solid waste at an authorized disposal site.
- \checkmark Ensure that containers have lids or are otherwise protected from exposure to precipitation.

	100	ioral, state, and resarrequirements:						
ľ					PROJECT ENGINEER:	C. TABOR		NE
r: SKANE					DESIGNED BY:	T. SMITH		NOLWI-
5 PM BY					DRAWN BY:	S. KANE	100% DESIGN - ISSUED	T
2022 2:05					CHECKED BY:	T. SCHUELER	FOR CONSTRUCTION	PR Lic.
: 4/29/					IF THIS BAR DOES NOT	0 1/2" 1"		
DT DATE:	REV	ISSUED FOR	DATE	BY	MEASURE 1" THEN DRAWING IS NOT TO FULL SCALE			

CONCRETE WASHOUT AREA NOTES

- ✓ The facility must be lined with 10 mil plastic lining that is free from holes, tears, or
- other defects that might compromise the material's impermeability. ✓ The lining must be anchored with staples (2' spacing) or sandbags.
- ✓ Side slopes must be 1:1 (horizontal:vertical) or flatter.
- \checkmark Stone access must be provided between the street and the concrete washout area. ✓ A "Concrete Washout" sign must be installed within 30 feet of the washout facility.
- The sign must be no smaller than 2' tall by 4' wide.

CITY OF CHARLOTTESVILLE CHARLOTTESVILLE, VIRGINIA

If the necessary modifications/revisions require approval by the Administrator or DEQ,

the modifications/revisions must be implemented no later than seven (7) calendar days

If the necessary modifications/revisions do not require approval by the Administrator,

the modifications/revisions must be implemented prior to the next anticipated storm

measures to address the identified deficiencies

following approval.

event or as soon as practicable.

SCHENKS BRANCH TRIBUTARY STREAM **RESTORATION PROJECT**

The operator(s) shall update the SWPPP to include \checkmark A record of dates when 1) major grading activities occur, 2) construction activities

- temporarily or permanently cease on a portion of the site, and 3) stabilization measures are initiated;
- Documentation of modifications and revisions to the SWPPP; ✓ Areas that have reached final stabilization where no further SWPPP or inspection requirements apply:
- \checkmark All properties that are no longer under the legal control of the operator and the dates on which the operator no longer had legal control over each property; and \checkmark The date, volume, and corrective/preventative actions implemented for any

Operator(s)

Initials

prohibited discharge. The operator(s) shall update the SWPPP no later than seven (7) days following any of the situations identified above.

The operator(s) identified below shall provide for inspections of the permitted land-

disturbing activities by the qualified personnel identified below. The inspections will be conducted (select one the following options): at least once every four (4) business days; or at least once every five (5) business days and no later than 48 hours following any measurable storm event.

OPERATOR INSPECTIONS

SWPPP UPDATES

Where areas are in a stabilized condition or runoff is unlikely due to winter conditions, the inspection frequency may be reduced to once every 30 days while these conditions exist. Otherwise, the operator(s) shall resume the regular inspection frequency

Management Plan, Pollution Prevention Plan, TMDL requirements, etc.).

identified above.

Records of the required inspections must be maintained and included in the SWPPP binder. The qualified personnel are encouraged to use the Operator Inspection form provided in the SWPPP binder to document the required inspections. If inspections are conducted once every five (5) business days <u>and</u> no later than 48 hours following any measureable storm event, the location of the rain gauge used to determine the amount of rain must be included in the SWPPP and documented in the inspection report.

 has been designated by the Operator to conduct inspections of the permitted site; is knowledgeable in the principles and practices of erosion and b. sediment control and stormwater management; possesses the skills to assess conditions at the permitted site for the Operator(s) that could impact stormwater quality and quantity; d. will assess the effectiveness of any erosion and sediment control measures or stormwater management facilities selected to control the

Name (print) Phone

Additional information is located in Tab 6 of the SWPPP Binder. As the Operator(s) or Delegated Authority, I/we understand that prior to initiating land disturbance, the potential pollutant sources, appropriate control measures, and all responsible parties (operator, qualified inspection personnel, contractors, etc.) required as a condition of the General Construction Permit (GCP) and the Stormwater Pollution Prevention Plan (SWPPP) must be identified. I also understand this information must

be updated as necessary throughout all phases of construction until the GCP is terminated.

Furthermore, I/we certify under penalty of law that I/we have read and understand all requirements of the SWPPP (erosion and sediment control plan, stormwater management plan, pollution prevention plan, TMDL provisions, administrative requirements, etc.) and GCP and that the information herein is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine or imprisonment for knowing violations. I/we understand that I/we are ultimately responsible for compliance with all conditions and requirements of the SWPPP and GCP and for ensuring all contractors and subcontractors on the permitted site are aware of the conditions and requirements of the SWPPP and GCP.

I/we shall comply with all conditions and requirements of the SWPPP and shall at all

times properly operate and maintain all measures and control (and related appurtenances) which are installed or used to achieve compliance with the conditions of the GCP. Proper opration and maintenance also includes adequate funding and adequate staffing. I/we shall take all reasonable steps to minimize or prevent any discharge in violation of

Name (print)

Additional contact information can be found in the SWPPP Binder

Initials

Initials

the SWPPP and/or GCP. I/we understand that if it determined by the Department of Environmental Quality (DEQ) in consultation with the State Water Control Board at any time that stormwater discharges are causing, have reasonable potential to cause, or contribute to and excursion above any applicable water quality standard, the DEQ may, in consultation with the Administrator, take appropriate enforcement action and require:

Cessation of discharges of pollutants from construction activity and submit an individual permit application according to 4VAC25-870-410.

CD12

DETAILS POLLUTION PREVENTION PLAN

Date

HAZEN CONTRACT NO.: 20282

DATE:

DRAWING NUMBER:

HAZEN NO .:

32571-003

APRIL 2022

OPERATOR(S) / DELEGATED AUTHORITY

a. Modification of control measures to adequately address water quality concerns: Submission of valid and verifiable data and information that are representative of ambient conditions and indicate that the receiving water is attaining water quality standards; or

Signature

stormwater discharges from the permitted site; and will conduct inspections in accordance with the frequency noted above in the OPERATOR INSPECTIONS section of this sheet. QUALIFIED PERSONNEL

ACKNOWLEDGEMENTS

I certify under penalty of law that the qualified personnel identified below:

The operator(s) shall provide for inspections of the permitted land-disturbing activity to ensure implementation and continued maintenance of all requirements of the Stormwater Pollution Prevention Plan (Erosion and Sediment Control Plan, Stormwater

basin/trap ✓ All vehicle washing activities other than wheel washing must have secondary containment Each facility must have appropriate signage to inform users where the *dedicated*

50 feet from those features.

area(s) are located. Shown on Water Source Location of Activity Plan Dedicated Area(s) Location Sheet #(s) Wheel Wash N/A - OFFSITE Other Wash **REVISIONS TO LOCATIONS** Shown on Location of Water Source Operator's Activity Plan Dedicated Area(s) Location Initials Sheet #(s)

distance from storm drain inlets, ditches, waterbodies or wetlands but no less than

✓ All wash water used in vehicle wheel washing must be directed to a sediment

CD13

DRAWING NUMBER:

DETAILS LANDSCAPING DETAILS

<u>NOTES:</u> 1. REMOVE WIRE AND NYLON TWINE FROM BALL AND CANOPY. 2. SOAK ROOT BALL AND PLANT PIT IMMEDIATELY AFTER INSTALLATION. STAKING IS REQUIRED FOR ALL TREES IN R.O.W. OR UPON REQUEST OF ARBORIST. 4. REMOVE EXCESS SOIL FROM SITE AND DISPOSE OF IN A LEGAL MANNER. 5. RESEED UNMULCHED, DISTURBED AREAS. 6. AT PLANTING PRUNE ONLY CROSSING LIMBS, CO-DOMINANT LEADERS, BROKEN OR DEAD BRANCHES, AND ANY BRANCHES THAT POSE A HAZARD TO PEDESTRIANS. - USE TWO OPPOSING, FLEXIBLE TIES -WHEN STAKING IS NECESSARY. TIES SHOULD BE PLACED ON THE LOWER HALF OF THE TREE AND ALLOW TRUNK TOP OF BALL TO BE SET 2" TO 3" ABOVE THE LEVEL OF THE SURROUNDING SOIL. -CENTER TRUNK OF THE TREE IN PIT. -KEEP MULCH AWAY FROM TRUNK 1" TO 2" 3" HIGH EARTH SAUCER 6" WIDE MAXIMUM BERM OUTSIDE OF ROOTBALL -2" TO 4" MAXIMUM LAYER OF SHREDDED HARDWOOD MULCH FINISH GRAD BACKFILL WITH 1/2 CLEAN EXISTING SOIL, 1/4 CERTIFIED TOPSOIL & 1/4 ORGANIC MATERIAL APPROVED BY THE CITY. REMOVE TYPICAL EXCESS SOIL FROM ROOT CROWN UNDISTURBED SO ROOT BALL DIA. REMOVE TOP 1/3 OF WRE BASKET WHERE PRESENT -WATER THOROUGHLY TWICE WITHIN THE FIRST 48 HOURS. RAISE PIT BOTTOM TO SET ROOT CROWN NOT TO SCALE CITY STANDARDS PLANTING TREES IN OPEN CITY OF CHARLOTTESVILLE

REVISION DATE

AREA OR GRASS STRIP

SCALE: N.T.S. STANDARD NUMBER: XX-2

GENERAL PLANTING NOTES:

- 1. CONTRACTOR SHALL OBTAIN LATEST EDITION OF THE FOLLOWING DOCUMENTS:
- A. RIPARIAN BUFFERS MODIFICATION & MITIGATION GUIDANCE MANUAL, VADEQ (2006) (WWW.DEQ.VIRGINIA.GOV/PORTALS/0/DEQ/WATER/PUBLICATIONS/RIPARIANBUFFERMANUAL.PDF)
- B. VIRGINIA PIEDMONT NATIVE PLANT GUIDE (https://www.plantvirginianatives.org/native-plants-for-northern-piedmont)
- C. "NONNATIVE INVASIVE PANTS OF SOUTHERN FORESTS"

(WWW.SRS.FS.USDA.GOV/PUBS/GTR/GTR_SRS062)

- D. VIRGINIA INVASIVE PLANT SPECIES LIST
- (HTTP://WWW.DCR.VIRGINIA.GOV/NATURAL-HERITAGE/DOCUMENT/NH-INVASIVE-PLANT-LIST-2014.PDF)
- E. ALBEMARLE COUNTY. PIEDMONT NATIVE PLANT DATABASE (http://webapps.albemarle.org/nativePlants/default.aspx)
- 2. ALL PLANTS SHALL BE INSTALLED AND MAINTAINED IN ACCORDANCE WITH THESE DOCUMENTS.
- 3. CONTRACTOR SHALL SUBMIT A PLANTING PLAN WITH A RECOMMENDED PLANT LIST TO THE CITY OF CHARLOTTESVILLE FOR REVIEW PRIOR TO COMMENCING PLANTING. PREFERRED PLANTS ARE SHOWN IN THE PLANTING SCHEDULES.CONTRACTOR SHALL REFER TO THE DOCUMENTS AND RESOURCES ABOVE WHEN PREPARING A PLAN. CONTRACTOR MAY SUBSITUTE OTHER SPECIES FOR THOSE LISTED IN THE PLANTING SCHEDULE IN COORDINATION WITH AND SUBJECT TO REVIEW BY THE THE CITY OF CHARLOTTESVILLE.
- PLANT DENSITIES, QUANTITIES, AND AREAS SHOWN IN PLANTING SCHEDULES ARE FOR CONVENIENCE ONLY AND MAY NOT BE 4 ACCURATE WITH AS-BUILT CONDITIONS. CONTRACTOR SHALL SUBMIT ESTIMATES FOR PLANT DENSITIESAND PLANTING AREAS IN THE PLANTING PLAN.
- CONTRACTOR SHALL STAKE OUT PLANTING ZONES FOR REVIEW AND APPROVAL BY THE CITY OF CHARLOTTESVILLE PRIOR TO 5. INSTALLING PLANTS.
- 6. SEED SHALL BE INSTALLED ON SCARIFIED, BARE GROUND. SEED PER ZONE IS SPECIFIED IN THE PLANTING SCHEDULES.
- 7. THIS PLAN IS FOR PLANTING PURPOSES ONLY, AND ANY OTHER INFORMATION SHOWN IS FOR REFERENCE ONLY. SEE SITE PLAN FOR INFORMATION ABOUT ALL LAYOUT, GRADING AND OTHER SITE IMPROVEMENTS.
- 8. CALL MISS UTILITY AT 811 OR 1-800-552-7001 TO MARK UTILITIES AT LEAST 48 HOURS BEFORE DIGGING.
- 9. ALL MATERIALS AND PLANTING PROCEDURES EXCEPT AS OTHERWISE NOTED SHALL CONFORM TO THE LATEST EDITION OF "LANDSCAPE SPECIFICATION GUIDELINES" BY THE LANDSCAPE CONTRACTORS ASSOCIATION MD-DC-VA.
- 10. PLANTS SHALL CONFORM TO THE CURRENT EDITION OF THE AMERICAN STANDARD FOR NURSERY STOCK. (ANSI Z60.1).
- 11. PLANT NAMES SHALL BE THOSE GIVEN IN THE LATEST EDITION OF STANDARD PLANT NAMES, AMERICAN COMMITTEE ON HORTICULTURAL NOMENCLATURE.
- 12. TOPSOIL SHALL MEET SPECIFICATIONS OF THE CONTRACT DOCUMENTS.
- 13. THE CONTRACTOR SHALL SUBMIT REPRESENTATIVE SOIL SAMPLES FROM BOTH IN-SITU SOILS AND SOILS BROUGHT IN FROM OFF-SITE TO A STATE LICENSED TESTING LABORATORY. THE CONTRACTOR SHALL INCORPORATE OR APPLY SOIL AMENDMENTS AND FERTILIZATION BASED UPON RESULTS OF THE SOIL TESTS AND RECOMMENDATIONS BY THE TEST LAB.
- 14. OWNER OR OWNER'S REPRESENTATIVE SHALL STAKE OUT ALL PLANTING BEDS AND TREE LOCATIONS FOR APPROVAL BY THE ENGINEER AND CITY REPRESENTATIVE BEFORE DIGGING. IT IS THE CONTRACTOR'S RESPONSIBILITY TO LOCATE AND COORDINATE PLANTINGS WITH ALL EXISTING UTILITIES. IF DISCREPANCIES OCCUR BECAUSE OF UTILITY LOCATIONS OR OTHER EXISTING CONDITIONS THE CONTRACTOR SHALL NOTIFY THE ENGINEER AND CITY REPRESENTATIVE IMMEDIATELY TO COORDINATE ANY NECESSARY ADJUSTMENTS.
- 15. ALL PLANT MATERIAL SHALL BE LABELED BY THE NURSERY AND DELIVERED WITH LABELS IN PLACE FOR INSPECTION. SUBSTITUTIONS IN PLANT SPECIES OR SIZE WILL NOT BE PERMITTED EXCEPT WITH THE APPROVAL OF THE ENGINEER AND CITY REPRESENTATIVE. DO NOT PRUNE UNTIL PLANT MATERIAL HAS BEEN PLANTED BUT AS SOON THEREAFTER AS IS ADVISABLE UNDER STANDARD HORTICULTURAL PRACTICES. FOR TREE PRUNING AND CARE METHODS PLEASE REFER TO ANSI A-300, LATEST EDITION.
- 16. IT IS OF UTMOST IMPORTANCE THAT ALL PLANT MATERIAL BE SET SLIGHTLY HIGHER IN RELATION TO GRADE THAN IT WAS GROWN IN THE NURSERY BUT NO HIGHER THAN 3 INCHES AND WITH GOOD EARTH TO ROOT CONTACT. ANY MATERIALS OR WORK MAY BE REJECTED BY THE ENGINEER OR CITY REPRESENTATIVE IF IT DOES NOT MEET THIS OR ANY OTHER REQUIREMENT OF THE SPECIFICATIONS. REJECTED MATERIALS SHALL BE REMOVED FROM THE SITE BY THE CONTRACTOR AT CONTRACTOR'S EXPENSE.
- 17. THE CONTRACTOR SHALL WATER ALL PLANTS WELL ON THE DAY THEY ARE PLANTED.
- 18. IN CASE OF DISCREPANCIES BETWEEN QUANTITIES ON THE PLANT LIST AND THE PLAN, THE PLAN SHALL GOVERN.
- 19. IT IS THE CONTRACTOR'S RESPONSIBILITY TO SEED ALL DISTURBED AREAS AS DIRECTED BY OWNER WHETHER OR NOT THEY ARE SHOWN IN THE PLANTING PLAN.
- 20. CONTRACTOR IS TO AVOID PLANTING TREES WITHIN THE SANITARY SEWER EASEMENT. THESE AREAS SHOULD BE SEEDED AND PLANTED WITH HERBACEOUS PLANTS ONLY.
- 21. TO ENSURE ESTABLISHMENT SUCCESS, SPRING PLANTING IS ADVISED FOR THE FOLLOWING GENUS OF PLANTS: JUNCUS, CAREX, SALIX, QUERCUS, CARYA, AND CERCIS.
- 22. CONTRACTOR TO PROVIDE PLANT ID TAG AND LABEL FOR EVERY TREE AND SHRUB.
- 23. PERMANENT SEED MIX TO BE INSTALLED PER ZONE ACCORDING TO LANDSCAPING SCHEDULE.
- 24. OWNER OR OWNER'S REPRESENTATIVE TO FIELD-SPECIFY APPLICATION EXTENTS OF 5311 CONSERVATION MIX WITHIN ZONE 3 DURING CONSTRUCTION.

SEQUENCE OF CONSTRUCTION:

- APPLY AND TILL IN A 1.5-INCH BLANKET OF SPECIFIED COMPOST AND 1.5-INCH OF TOPSOIL (3 INCHES TOTAL). COMPOST SHALL BE LEAFGRO® OR AN APPROVED EQUAL. THE PAPER WORK, SAMPLE AND U.S. COMPOSTING COUNCIL'S SEAL OF TESTING ASSURANCE PROGRAM (STA) CERTIFICATIONS FOR ALL ALTERNATES SHALL BE SUBMITTED AND APPROVED PRIOR TO PURCHASE. ALTERNATES MUST BE STA COMPOST APPROVED BY THE U.S. COMPOSTING COUNCIL'S SEAL OF TESTING ASSURANCE PROGRAM.
- 2. APPLY SPECIFIED SEED MIX AT SPECIFIED RATE PER PLANTING SCHEDULE.
- 3. PLACE CERTIFIED WEED FREE STRAW ALL OVER AREAS THAT DO NOT HAVE COIR MAT.
- 4. RESEED ALL AREAS WITH LESS THAN 80% GERMINATION.
- 5. INSTALL A WATER BAG ON ALL TREES FOR THE FIRST FULL GROWING SEASON.
- 6. WATER ALL PLANTS ON A BIWEEKLY BASIS FOR THE FIRST FULL GROWING SEASON.

					PROJECT	C. TABOR		
1					ENGINEER:			Th.
					DESIGNED BY:	T. SMITH		NOT
							100% DESIGN -	
					DRAWN BT.	3. KANE	ISSUED	H
					CHECKED BY:	T. SCHUELER	FOR CONSTRUCTION	En Lie
								·O _{FI}
					MEASURE 1" THEN DRAWING IS	0 1/2" 1"		J. V. G
	REV	ISSUED FOR	DATE	BY	NOT TO FULL SCALE			74

	VA NORTHERN PIEDMONT, FACW SEED MIX (ENRMX-855)							
CONTRACT SCHEDULE	COMMON NAME	BOTANICAL NAME	CLASS	PERCENT	ТҮРЕ	QTY		
	FOX SEDGE	CAREX VULPINOIDEA	SEDGE	27	CAST SEED	-		
CONTRACT SCHEDULE BASE BID BASE BID BASE BID	VIRGINIA WILDRYE	ELYMUS VIRGINICUS	GRASS	20	CAST SEED	-		
	REDTOP PANICGRASS	PANICUM RIGIDULUM	GRASS	13.6	CAST SEED	-		
	LURID SEDGE	CAREX LURIDA	SEDGE	10	CAST SEED	-		
	HOP SEDGE	CAREX LUPULINA	SEDGE	7	CAST SEED	-		
	BLUNT BROOM SEDGE	CAREX SCOPARIA	SEDGE	7	CAST SEED	-		
	SWAMP MILKWEED	ASCLEPIAS INCARNATA	PERENNIAL	2	CAST SEED	-		
	WILD BROMEGRASS	BROMUS ALTISSIMUS	GRASS	2	CAST SEED	-		
	SOFT RUSH	JUNCUS EFFUSUS	RUSH	2	CAST SEED	-		
	FRINGED SEDGE	CAREX CRINITA	SEDGE	1	CAST SEED	-		
	FRANK'S SEDGE	CAREX FRANKII	SEDGE	1	CAST SEED	-		
	AWL SEDGE	CAREX STIPATA	SEDGE	1	CAST SEED	-		
	PATH RUSH	JUNCUS TENUIS	RUSH	1	CAST SEED	-		
	BONESET	EUPATORIUM PERFOLIATUM	PERENNIAL	0.8	CAST SEED	-		
	MISTFLOWER	EUPATORIUM COELESTINUM	PERENNIAL	0.5	CAST SEED	-		
BASE BID	FOWL MANNAGRASS	GLYCERIA STRIATA	GRASS	0.5	CAST SEED	-		
	COMMON SNEEZEWEED	HELENIUM AUTUMNALE	PERENNIAL	0.5	CAST SEED	-		
	PURPLEHEAD SNEEZEWEED	HELENIUM FLEXUOSUM	PERENNIAL	0.5	CAST SEED	-		
	NEW YORK IRONWEED	VERNONIA NOVEBORACENSIS	PERENNIAL	0.5	CAST SEED	-		
	PURPLESTEM ASTER	ASTER PUNICEUS	PERENNIAL	0.4	CAST SEED	-		
	FLAT TOPPED WHITE ASTER	ASTER UMBELLATUS	PERENNIAL	0.4	CAST SEED	-		
	SQUARE STEMMED MONKEYFLOWER	MIMULUS RINGENS	PERENNIAL	0.4	CAST SEED	-		
	JOE PYE WEED	EUPATORIUM FISTULOSUM	PERENNIAL	0.3	CAST SEED	_		
	WOOLGRASS	SCIRPUS CYPERINUS	GRASS	0.3	CAST SEED	-		
	WRINKLELEAF GOLDENROD	SOLIDAGO RUGOSA	PERENNIAL	0.3	CAST SEED	_		
		1			L]		
	MODIFIED - VA NORTHERN PIE	DMONT, RIPARIAN PIEDMONT SEED N	/IX (ENRMX-852)					
CONTRACT SCHEDULE	COMMON NAME	BOTANICAL NAME	CLASS	PERCENT	ТҮРЕ	QTY		
	VIRGINIA WILDRYE	ELYMUS VIRGINICUS	GRASS	20	CAST SEED	-		
	LITTLE BLUESTEM	SCHIZACHYRIUM SCOPARIUM	GRASS	20	CAST SEED	-		
CONTRACT SCHEDULE	SWITCHGRASS	PANICUM VIRGATUM	GRASS	15	CAST SEED	-		
	PURPLE LOVEGRASS	ERAGROSTIS SPECTABILIS	GRASS	10	CAST SEED			
	PRAIRIE DROPSEED	SPOROBOLUS HETEROLEPSIS	GRASS	10	CAST SEED	-		
	TUSSOCK SEDGE	CAREX STRICTA	SEDGE	5	CAST SEED			
	REDTOP PANICGRASS	PANICUM RIGIDULUM	GRASS	5	CAST SEED	-		
	BLACKEYED SUSAN	RUDBECKIA HIRTA	PERENNIAL	3.4	CAST SEED	-		
	PARTRIDGE PEA	CHAMAECRISTA FASCICULATA	ANNUAL	2	CAST SEED	-		
BASE BID	SWAMP MILKWEED	ASCLEPIAS INCARNATA	PERENNIAL	1.6	CAST SEED	-		
	SENSITIVE PEA	CHAMAECRISTA NICTITANS	ANNUAL	1	CAST SEED	-		
BASE BID	COMMON SNEEZEWEED	HELENIUM AUTUMNALE	PERENNIAL	1	CAST SEED	-		
	PURPLEHEAD SNEEZEWEED	HELENIUM FLEXUOSUM	PERENNIAL	1	CAST SEED	-		
	PURPLESTEM ASTER	ASTER PUNICEUS	PERENNIAL	1	CAST SEED	-		
	BONESET	EUPATORIUM PERFOLIATUM	PERENNIAL	1	CAST SEED	-		
	WRINKLELEAF GOLDENROD	SOLIDAGO RUGOSA	PERENNIAL	1	CAST SEED	-		
	NEW YORK IRONWEED	VERNONIA NOVEBORACENSIS	PERENNIAL	1	CAST SEED	<u> </u>		
	JOE PYE WEED		PERENNIAL	1	CAST SEED			
				-]		
	5311 CO	NSERVATION MIX (ERNMX-114)						
		, ,						

	VA NORTHERN PIEDMONT, FACW SEED MIX (ENRMX-855)							
CONTRACT SCHEDULE	COMMON NAME	BOTANICAL NAME	CLASS	PERCENT	TYPE	QTY		
	FOX SEDGE	CAREX VULPINOIDEA	SEDGE	27	CAST SEED	-		
BASE BID BASE BID	VIRGINIA WILDRYE	ELYMUS VIRGINICUS	GRASS	20	CAST SEED	-		
	REDTOP PANICGRASS	PANICUM RIGIDULUM	GRASS	13.6	CAST SEED	-		
	LURID SEDGE	CAREX LURIDA	SEDGE	10	CAST SEED	-		
	HOP SEDGE	CAREX LUPULINA	SEDGE	7	CAST SEED	-		
	BLUNT BROOM SEDGE	CAREX SCOPARIA	SEDGE	7	CAST SEED	-		
	SWAMP MILKWEED	ASCLEPIAS INCARNATA	PERENNIAL	2	CAST SEED	-		
	WILD BROMEGRASS	BROMUS ALTISSIMUS	GRASS	2	CAST SEED	-		
	SOFT RUSH	JUNCUS EFFUSUS	RUSH	2	CAST SEED	-		
	FRINGED SEDGE	CAREX CRINITA	SEDGE	1	CAST SEED	-		
BASE BID BASE BID	FRANK'S SEDGE	CAREX FRANKII	SEDGE	1	CAST SEED	-		
	AWL SEDGE	CAREX STIPATA	SEDGE	1	CAST SEED	-		
	PATH RUSH	JUNCUS TENUIS	RUSH	1	CAST SEED	-		
	BONESET	EUPATORIUM PERFOLIATUM	PERENNIAL	0.8	CAST SEED	-		
	MISTFLOWER	EUPATORIUM COELESTINUM	PERENNIAL	0.5	CAST SEED	_		
	FOWL MANNAGRASS	GLYCERIA STRIATA	GRASS	0.5	CAST SEED	_		
	COMMON SNEEZEWEED	HELENIUM AUTUMNALE	PERENNIAL	0.5	CAST SEED	_		
CONTRACT SCHEDULE F V N N N N N BASE BID F M N P N F N P N <td>PURPLEHEAD SNEEZEWEED</td> <td>HELENIUM FLEXUOSUM</td> <td>PERENNIAL</td> <td>0.5</td> <td>CAST SEED</td> <td>_</td>	PURPLEHEAD SNEEZEWEED	HELENIUM FLEXUOSUM	PERENNIAL	0.5	CAST SEED	_		
		VERNONIA NOVEBORACENSIS	PERENNIAL	0.5	CAST SEED	_		
	PURPLESTEM ASTER	ASTER PUNICEUS	PERENNIAL	0.4	CAST SEED	_		
	FLAT TOPPED WHITE ASTER	ASTER UMBELLATUS		0.4	CAST SEED	_		
		MIMULUS RINGENS		0.4	CAST SEED			
				0.3	CAST SEED			
	WOOLGRASS	SCIRPUS CYPERINUS	GRASS	0.3	CAST SEED			
				0.3	CAST SEED			
				0.0	ONOT OLLD	<u> </u>		
	MODIFIED - VA NORTHERN PIEL	MONT, RIPARIAN PIEDMONT SEED N	/IX (ENRMX-852)					
CONTRACT SCHEDULE		BOTANICAL NAME	CLASS	PERCENT	ТҮРЕ	QTY		
			GRASS	20	CAST SEED	_		
		SCHIZACHYRIUM SCOPARIUM	GRASS	20	CAST SEED	_		
	SWITCHGRASS		GRASS	15	CAST SEED	_		
BASE BID BASE BID	PURPLE LOVEGRASS	FRAGROSTIS SPECTABILIS	GRASS	10	CAST SEED			
		SPOROBOLUS HETEROLEPSIS	GRASS	10	CAST SEED	_		
			SEDGE	5	CAST SEED			
ONTRACT SCHEDULE			GRASS	5	CAST SEED	_		
	BLACKEVED SUSAN			3.4	CAST SEED			
				2		_		
BASE BID BASE BID BASE BID BASE BID A BASE BID A B B B B B B B B B B B B				1.6		_		
				1		_		
				1		_		
				1		-		
				1		-		
				1	CAST SEED	-		
				1		-		
				1		-		
			PERENNIAL	1				
		EUPATORIUM FISTULOSUM	PERENNIAL	1	CAST SEED	-		
	F144 001]		
	5311 COI	VSERVATION WIA (EKNWA-114)						

CONTRACT SCHEDULE	COMMON NAME	BOTANICAL NAME	CLASS	PERCENT	TYPE	QTY
	CREEPING RED FESCUE	FESTUCA RUBRA	GRASS	30	CAST SEED	-
	KENTUCKY BLUEGRASS, 'KELLY'	POA PRATENSIS, 'KELLY'	GRASS	25	CAST SEED	-
BASE BID	KENTUCKY BLUEGRASS, 'BARON'	POA PRATENSIS, 'BARON'	GRASS	25	CAST SEED	-
	ANNUAL RYEGRASS	LOLIUM MULTIFLORUM	GRASS	10	CAST SEED	-
	PERENNIAL RYEGRASS, 'CONFETTI III', TURF TYPE	LOLIUM PERENNE, 'CONFETTI III'	GRASS	10	CAST SEED	-
	PE	ERMANENT SEED MIX				

CITY OF CHARLOTTESVILLE CHARLOTTESVILLE, VIRGINIA

SCHENKS BRANCH TRIBUTARY STREAM **RESTORATION PROJECT**

DETAILS
ANDSCAPING NOTES AND PERMANENT SEED MIX

HAZEN CONTRACT NO .: 202827

DRAWING NUMBER:

HAZEN NO.:

DATE:

CD14

APRIL 2022

32571-003

		ZONE 1 - STREA	ZONE 1 - STREAM TOE TO BACK OF BANKFULL BENCH				
	PLANTING SCHEDULE	COMMON NAME	BOTANICAL NAME				
		PIEDMONT FACW MIX	ERNMX-855				
BASE BID		SOFT RUSH	JUNCUS EFFUSUS				
		LURID SEDGE	CAREX LURIDA				
	DAGE DID	SILKY WILLOW	SALIX SERICEA				
		SILKY DOGWOOD	CORNUS AMOMUM				
		ELDERBERRY	SAMBUCUS CANADENSIS				

	SILKY DOGWOOD	CORNUS AMOMUM	SHRUB	4' O.C.	LIVE STAKE	232
	ELDERBERRY	SAMBUCUS CANADENSIS	SHRUB	4' O.C.	LIVE STAKE	232
	·					
	ZONE 2 - BACK OF	BANKFULL BENCH TO EDGE OF GRA	DING			
PLANTING SCHEDULE	COMMON NAME	BOTANICAL NAME	CLASS	PLANTING RATE	ТҮРЕ	QTY
	MODIFIED - RIPARIAN PIEDMONT SEED MIX	ERNMX-852		0.5#/1000 SF	SY, CAST SEED	3950
	BEAUTYBERRY	CALLICARPA AMERICANA	SHRUB	10' O.C.	1 GALLON	50
	PAWPAW	ASIMINA TRILOBA	SHRUB	10' O.C.	1 GALLON	50
	ELDERBERRY	SAMBUCUS CANADENSIS	SHRUB	10' O.C.	1 GALLON	50
	NORTHERN SPICEBUSH	LINDERA BENZOIN	SHRUB	10' O.C.	1 GALLON	50
	BUTTONBUSH	CEPHALANTHUS OCCIDENTALIS	SHRUB	10' O.C.	1 GALLON	63
	SWAMP AZALEA	RHODO. VISCOSUM	SHRUB	10' O.C.	1 GALLON	63
	HAZEL ALDER	ALNUS SERRULATA	SHRUB	10' O.C.	1 GALLON	63
BASE BID	RED CHOKEBERRY	ARONIA ARBUTIFOLIA	SHRUB	10' O.C.	1 GALLON	63
	COMMON PERSIMMON	DIOSPYROS VIRGINIANA	CANOPY	25' O.C.	BARE ROOT	15
	TULIP POPLAR	LIRIODENDRON TULIPIFERA	CANOPY	25' O.C.	2" CALIPER	10
PLANTING SCHEDULE BASE BID ADD-ALTERNATE	AMERICAN SYCAMORE	PLATANUS OCCIDENTALIS	CANOPY	25' O.C.	2" CALIPER	10
	RIVER BIRCH	BETULA NIGRA	CANOPY	25' O.C.	MULTI-STEM, 7' HT	10
	HORNBEAM	CARPINUS CAROLINIANA	CANOPY	25' O.C.	1" CALIPER	12
	WATER TUPELO	NYSSA AQUATICA	CANOPY	25' O.C.	1" CALIPER	12
	WATER OAK	QUERCUS NIGRA	CANOPY	25' O.C.	1" CALIPER	12
	SWAMP WHITE OAK	QUERCUS BICOLOR	CANOPY	35' O.C.	1" CALIPER	12
	BALD CYPRESS	TAXODIUM DISTICHUM	CANOPY	35' O.C.	7' HT.	10
	1			1		
	DWARF FOTHERGILLA	FOTHERGILLA GARDENII	SHRUB	FIELD SPECIFIED	1 GALLON	20
	BUTTONBUSH	CEPHALANTHUS OCCIDENTALIS	SHRUB	FIELD SPECIFIED	1 GALLON	7
	SPICEBUSH	LINDERA BENZOIN	SHRUB	FIELD SPECIFIED	1 GALLON	9
	SWAMP AZALEA	RHODO. VISCOSUM	SHRUB	FIELD SPECIFIED	1 GALLON	7
	PINXTERBLOOM AZALEA	RHODO. PERICLYMENOIDES	SHRUB	FIELD SPECIFIED	1 GALLON	8
	POSSUM HAW VIBURNUM	VIBURNUM NUDUM	SHRUB	FIELD SPECIFIED	1 GALLON	5
	ARROWWOOD VIBURNUM	VIBURNUM DENTATUM	SHRUB	FIELD SPECIFIED	1 GALLON	7
	BLACKHAW VIBURNUM	VIBURNUM PRUNIFOLIUM	SHRUB	FIELD SPECIFIED	1 GALLON	5
	ARROWWOOD VIBURNUM	VIBURNUM DENTATUM	SHRUB	FIELD SPECIFIED	3 GALLON	10
	BLACKHAW VIBURNUM	VIBURNUM PRUNIFOLIUM	SHRUB	FIELD SPECIFIED	3 GALLON	10
ADD-ALTERNATE	HICKORY	CARYA SP.	CANOPY	FIELD SPECIFIED	BARE ROOT	5
	SWAMP WHITE OAK	QUERCUS BICOLOR	CANOPY	FIELD SPECIFIED	3/4" CALIPER	5
	SWAMP CHESTNUT OAK	QUERCUS MICHAUXII	CANOPY	FIELD SPECIFIED	3/4" CALIPER	3
	WATER OAK	QUERCUS NIGRA	CANOPY	FIELD SPECIFIED	3/4" CALIPER	2
	SWEET BIRCH	BETULA LENTA	CANOPY	FIELD SPECIFIED	3/4" CALIPER	3
	DOWNY SERVICEBERRY	AMELANCHIER ARBOREA	CANOPY	FIELD SPECIFIED	3/4" CALIPER	3
	CANADIAN SERVICEBERRY	AMELANCHIER CANADENSIS	CANOPY	FIELD SPECIFIED	3/4" CALIPER	3
	SMOOTH SERVICEBERRY	AMELANCHIER LAEVIS	CANOPY	FIELD SPECIFIED	3/4" CALIPER	3
	WATER TUPELO	NYSSA AQUATICA	CANOPY	FIELD SPECIFIED	3/4" CALIPER	3
	BLACKGUM	NYSSA SYLVATICA	CANOPY	FIELD SPECIFIED	3/4" CALIPER	3
	BALD CYPRESS	TAXODIUM DISTICHUM	CANOPY	FIELD SPECIFIED	5' HT.	11
	RIVER BIRCH	BETULA NIGRA	CANOPY	FIELD SPECIFIED	MULTI-STEM, 7' HT	2

• date: 4/28/2022 5:08 PM	
save	
SKANE S	
d by	
avec	
5 S	
NDETAILS/CD1	
BIS	
-001\CAD_	
-000\32571	
0:\32571	

				PROJECT ENGINEER:	C. TABOR		م ور
				DESIGNED BY:	T. SMITH		
				DRAWN BY:	S. KANE	100% DESIGN - ISSUED	CO
				CHECKED BY:	T. SCHUELER	FOR CONSTRUCTION	PRO
				IF THIS BAR DOES NOT	0 4/0" 4"		
				MEASURE 1" THEN DRAWING IS			7
REV	ISSUED FOR	DATE	BY	NOT TO FULL SCALE			

CHARLOTTESVILLE, VIRGINIA SCHENKS BRANCH TRIBUTARY STREAM

RESTORATION PROJECT

CITY OF CHARLOTTESVILLE

QTY

980

349

349

232

TYPE

PLUG

PLUG

LIVE STAKE

SY, CAST SEED

CLASS PLANTING RATE

SEDGE

SEDGE

SHRUB

0.5#/1000 SF

4' O.C.

4' O.C.

4' O.C.

	ZONE 3 - EDO	GE OF GRADING TO EDGE OF DISTURBA	ANCE	
PLANTING SCHEDULE	COMMON NAME	BOTANICAL NAME	CLASS	
	MODIFIED - RIPARIAN PIEDMONT SEED MIX	ERNMX-852		
	5311 CONSERVATION SEED MIX	ERNMX-114		
	VERNAL WITCHHAZEL	HAMAMELIS VERNALIS	SHRUB	
	WITCHHAZEL	HAMAMELIS VIRGINIANA	SHRUB	Τ
	WINTERBERRY	ILEX VERTICILLATA	SHRUB	Γ
	DWARF FOTHERGILLA	FOTHERGILLA GARDENII	SHRUB	Γ
	ARROWWOOD VIBURNUM	VIBURNUM DENTATUM	SHRUB	Τ
	EASTERN SWEETSHRUB	CALYCANTHUS FLORIDUS	SHRUB	Τ
	SOUTHERN ARROWWOOD	VIBURNUM DENTATUM	SHRUB	Τ
BASE BID	ELDERBERRY	SAMBUCUS CANADENSIS	SHRUB	Τ
	BITTERNUT HICKORY	CARYA CORDIFORMIS	CANOPY	\top
	EASTERN REDBUD	CERCIS CANADENSIS	CANOPY	\top
	BLACKGUM	NYSSA SYLVATICA	CANOPY	\top
	AMERICAN BEECH	FAGUS GRANDIFOLIA	CANOPY	\square
	SWAMP WHITE OAK	QUERCUS BICOLOR	CANOPY	\uparrow
	SWAMP CHESTNUT OAK	QUERCUS MICHAUXII	CANOPY	\uparrow
	SASSAFRAS	SASSAFRAS ALBIDUM	CANOPY	\uparrow
	WHITE OAK	QUERCUS ALBA	CANOPY	\uparrow
	RED MAPLE	ACER RUBRUM	CANOPY	\uparrow
		I		
	ARROWWOOD VIBURNUM	VIBURNUM DENTATUM	SHRUB	F
	BLACKHAW VIBURNUM	VIBURNUM PRUNIFOLIUM	SHRUB	F
	WINTERBERRY	ILEX VERTICILLATA	SHRUB	F
	POSSUM HAW VIBURNUM	VIBURNUM NUDUM	SHRUB	F
	HICKORY	CARYA SP.	CANOPY	F
	SWAMP WHITE OAK	QUERCUS BICOLOR	CANOPY	F
	CHESTNUT OAK	QUERCUS MONTANA	CANOPY	F
ADD-ALTERNATE	WILLOW OAK	QUERCUS PHELLOS	CANOPY	F
	DOWNY SERVICEBERRY	AMELANCHIER ARBOREA	CANOPY	F
	CANADIAN SERVICEBERRY	AMELANCHIER CANADENSIS	CANOPY	F
	SMOOTH SERVICEBERRY	AMELANCHIER LAEVIS	CANOPY	F
	BLACKGUM	NYSSA SYLVATICA	CANOPY	F
	BALD CYPRESS	TAXODIUM DISTICHUM	CANOPY	F
	RIVER BIRCH	BETULA NIGRA	CANOPY	F
		· ·		
	ZONE 4 - SANITARY SEWER	REASEMENT AND TEMPORARY CONSTR		AY
PLANTING SCHEDULE	COMMON NAME	BOTANICAL NAME	CLASS	
BASE BID	MODIFIED - RIPARIAN PIEDMONT SEED MIX	ERNMX-852		
	HAZEL ALDER	ALNUS SERRULATA	SHRUB	F
	HAZELNUT	CORYLUS AMERICANA	SHRUB	F
	VERNAL WITCHHAZEL	HAMAMELIS VERNALIS	SHRUB	F
	WITCHHAZEL	HAMAMELIS VIRGINIANA	SHRUB	F
ADD-ALTERNATE	RED CHOKEBERRY	ARONIA ARBUTIFOLIA	SHRUB	F
	CANADIAN SERVICEBERRY	AMELANCHIER CANADENSIS	CANOPY	F
	SMOOTH SERVICEBERRY	AMELANCHIER LAEVIS	CANOPY	F
	SOURWOOD	OXYDENDRON ARBOREUM	CANOPY	F
	SASSAFRAS	SASSAFRAS ALBIDUM	CANOPY	F

LANDSCAPING SCHEDULE

CD15

DETAILS LANDSCAPING SCHEDULE QTY

930

15

15

15

15

15

15

15

15

10

4

4

4

4

4

6

4

4

13

10

10

3

5

3

2

2

2

3

3

3

3

5

QTY

7

20

11

7

21

1

4

7

TYPE

SY, CAST SEED

3 GALLON

BARE ROOT

1" CALIPER

1" CALIPER

1" CALIPER

1" CALIPER

1" CALIPER

1" CALIPER

1.5" CALIPER

2" CALIPER

3 GALLON

3 GALLON

3 GALLON

3 GALLON

BARE ROOT

1" CALIPER

5' HT.

TYPE

1 GALLON

1 GALLON

1 GALLON

1 GALLON

1 GALLON

3/4" CALIPER

3/4" CALIPER

3/4" CALIPER

3/4" CALIPER

SY, CAST SEED 1580

FIELD SPECIFIED | MULTI-STEM, 7' HT

SY, CAST SEED 2490

PLANTING RATE

0.5#/1000 SF

3-5#/1000 SF

8' O.C.

8' O.C.

8' O.C.

8' O.C.

8' O.C.

15' O.C.

15' O.C.

15' O.C.

35' O.C.

FIELD SPECIFIED

PLANTING RATE

0.5#/1000 SF

FIELD SPECIFIED

CANOPY FIELD SPECIFIED

CANOPY | FIELD SPECIFIED |

CANOPY FIELD SPECIFIED

HAZEN CONTRACT NO.: 202827

DATE:

DRAWING NUMBER:

APRIL 2022

32571-003 HAZEN NO.: